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Abstract 

Acoustic models based on long short-term memory (LSTM) 

recurrent neural networks (RNNs) were applied to statistical 

parametric speech synthesis (SPSS) and shown significant 

improvements. However, the model complexity and inference 

time cost of RNNs are much higher than feed-forward neural 

networks (FNN) due to the sequential nature of the learning 

algorithm, thus limiting its usage in many runtime applications. 

In this paper, we explore a novel application of deep time 

delay neural network (TDNN) for embedded SPSS, which 

requires low disk footprint, memory and latency. The TDNN 

could model long short-term temporal dependencies with 

inference cost comparable to standard FNN. Temporal 

subsampling enabled by TDNN could reduce computational 

complexity. Then we compress deep TDNN using singular 

value decomposition (SVD) to further reduce model 

complexity, which are motivated by the goal of building 

embedded SPSS systems which can be run efficiently on 

mobile devices. Both objective and subjective experimental 

results show that, the proposed deep TDNN with SVD 

compression could generate synthesized speech with better 

speech quality than FNN and comparable speech quality to 

LSTM,  while drastically reduce model complexity and speech 

parameter generation time.  

Index Terms: deep TDNN, SVD, acoustic model, embedded 

statistical parametric speech synthesis 

1. Introduction 

Statistical parametric speech synthesis (SPSS) [1] based on 

deep neural networks (DNNs) have become dominant in text-

to-speech (TTS) research area in recent years [2-21]. DNN-

based acoustic models offer an efficient representation of 

complex dependencies between linguistic and acoustic 

features, and have advanced the perceived naturalness of 

synthesized speech [2-10]. Recurrent neural networks (RNNs) 

[22], especially long short-term memory (LSTM) [23], which 

use a dynamic changing context window over all of the 

sequence history rather than a fixed context window have 

shown their advantages in capturing long-term dependencies 

in sequential data, and turn out to be a great success in SPSS 

[9]. However, due to the recurrent connections in the RNNs, 

the model complexity and inference cost of RNNs are much 

higher than feed-forward neural networks (FNNs).  

As speech synthesis technologies continue to improve, 

they are becoming increasingly ubiquitous on mobile devices: 

voices assistants such as Apple’s Siri and Microsoft’s Cortana 

could now synthesize human-like speech. Though the 

traditional models for these applications have been to 

synthesize speech remotely on large servers, there have been 

growing interest in developing TTS technologies that could 

synthesize speech directly “on-device” [24]. Some of the main 

challenges in this regard are the disk footprint, memory and 

computational constrains imposed by these devices. 

Different from FNNs that maps a fixed input within a 

small context window to a fixed output, a time delay neural 

network (TDNN) [25] is able to deal with long-term temporal 

contexts. This architecture employs a modular and incremental 

design to create larger network so that the lower layers focus 

on modeling narrow context information, while the higher 

layers learn from wider temporal context information [26]. 

More importantly, the TDNN preserves the feed-forward 

structure so that the training and inference time cost are 

comparable with FNN. Moreover, the computation cost of 

TDNN could be reduced by sub-sampling its temporal 

connections [27]. In this paper, we propose to use TDNN for 

embedded statistical parametric speech synthesis. We first 

train a deep TDNN based acoustic model with sub-sampling to 

reduce TDNN complexity. Then we investigate the influences 

of different temporal context windows in each TDNN layer to 

the performance of systems. After that, we propose to apply 

singular value decomposition (SVD) to further reduce the 

ranks of affine transform matrices [28], which requires further 

regularization on TDNN training.  With SVD compression, we 

could train a larger deep TDNN first, then compress it to meet 

the model complexity requirements afterwards. For 

comparison, we have trained FNN and LSTM based speech 

synthesis systems as baselines. Experimental results show the 

proposed deep TDNN with SVD compression generates 

synthesized speech with better speech quality than FNN and 

comparable speech quality to LSTM, while drastically reduce 

model complexity and speech parameter generation time. 

The rest of this paper is organized as follows. Section 2 

introduces our baseline SPSS systems. Section 3 describes the 

proposed deep SVD-TDNN based speech synthesis system, 

including sub-sampling approach and how SVD is applied for 

compression. Experiments and results are presented in Section 

4. Conclusion remarks are shown in the final Section. 

2. DNN based SPSS System 

Neural networks have re-emerged as a potential powerful 

acoustic model for SPSS. In DNN-based SPSS, DNN is 

trained as a regression model to map input linguistic features 

into output acoustic features. In [6], a feed-forward neural 

network (FNN) was employed to map a linguistic 

representation derived from input text directly to acoustic 

features. However, the temporal sequence nature of speech is 

not explicitly modeled in the FNN architectures. In [23], a 

LSTM was employed to map a sequence of linguistic features 

to corresponding sequence of acoustic features and achieved 
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great improvements. In this paper, both FNN and LSTM are 

used as the baseline systems.  
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Figure1: Architecture of FNN or LSTM based SPSS. 

Fig.1 shows the overview of the streaming SPSS 

architecture using FNN or LSTM. The input text is first 

converted into linguistic features through the text analysis, 

then a FNN or LSTM is employed to model the mapping 

between the input linguistic features and the output acoustic 

features. In order to generate smooth parameter trajectories, 

dynamic features are constraints in speech parameter 

generation, where predicted features are used as means vectors 

and the global variances of the training data are adopted for 

generating speech parameters by maximizing the probability. 

Finally, speech waveforms are generated by a vocoder with 

generated speech parameters.  

3. Deep SVD-TDNN based embedded 

speech synthesis system 

The proposed deep SVD-TDNN based embedded SPSS is 

similar to LSTM/FNN based SPSS that described in Section 2, 

except we replace the LSTM/FNN with deep SVD-TDNN. 

The SVD compression employed here follows the ideas in 

[28-30]. In this section, we will first review the basic 

architectures of TDNN, and then demonstrate how to use the 

deep TDNN for acoustic modeling. After that, we show how 

to apply the SVD compression on the deep TDNN. Finally, we 

give a summary of our training procedure. 

3.1. Deep TDNN Architecture 

3.1.1. TDNN 

The basic unit in the FNN computes the weighted sum of its 

inputs and then pass this sum through a nonlinear function, 

most commonly a sigmoid or tanh function. However, in the 

TDNN [25], this basic unit is modified by introducing delays 

𝐷𝐿  through 𝐷𝑅  as shown in Fig.2. The j-th inputs of such a 

unit now will be multiplied by several weights. In this way, a 

TDNN unit has the ability to relate and compare current input 

to the past history of events. The activation function for node 𝑖 
at time 𝑡 in such a network is given by: 

𝑦𝑖
𝑡 = ℎ(∑ ∑ 𝑦𝑗

𝑡−𝑘𝑤𝑖𝑗𝑘
𝐷𝑅
𝑘=𝐷𝐿

𝑖−1
𝑗=1 )   (1) 

where 𝑦𝑖
𝑡  is the output of node 𝑖  at time 𝑡 , 𝑤𝑖𝑗𝑘  is the 

connection strength to node 𝑖  from output of node 𝑗 at time 

𝑡 − 𝑘, and ℎ is the activation function. In this paper, we use 

rectifier linear units (ReLUs) [31] as activation functions: 

ℎ(∙) = 𝑟𝑒𝑙𝑢(𝑥) = {
𝑥    𝑥 > 0
0    𝑥 ≤ 0

    (2) 

Compared with other activation fucntions, such as sigmoid 

or tanh, the computation cost of ReLUs is much cheaper: there 

is no need for computing the exponential function in ReLUs, 

and only comparison operation is required. As a results, it 

would be beneficial to improve computation effectiveness of 

the system. 

3.1.2. Deep TDNN 

To learn the complex mappings between the linguistic features 

and acoustic features, we can stack the TDNN to form a deep 

TDNN architecture. The architecture of deep TDNN used for 

embedded SPSS is shown in Fig.3, which is able to see longer 

temporal dependencies hierarchically. The figure shows the 

time steps at which activations are computed, at each layer, 

and dependencies between activations across layers. When 

processing a wider temporal context, the initial transforms are 

learnt on narrow contexts and the deeper layers process the 

hidden activation from a wider temporal context. Therefore, 

the higher layers are able to learn wider temporal relationships. 

Each layer in the deep TDNN operates at a different temporal 

resolution, which increases as we go to higher layers of the 

network. The parameters of each layer of TDNN are tied 

across different time stamps [29-30].  
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Figure 2: A time delay neural network (TDNN) unit. 

3.2. Sub-sampling 

In the regular TDNN, hidden activations are computed at all 

time delay steps from 𝐷𝐿  to 𝐷𝑅 . However, the DNN based 

acoustic models predict features at frame level. Thus there are 

large overlaps between input contexts of the activations 

computed at neighboring time steps. To take advantages of 

this property, sub-sampling [27] is employed to skip some 

adjacent frames in this paper. More importantly, by using sub-

sampling, we could reduce the complexity of TDNN.  
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Figure 3: Computation in TDNN with sub-sampling (blue). 
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More concretely, instead of splicing together contiguous 

temporal windows of frames at each layer, we allow gaps 

between the frames. For example, the notation {𝐷𝐿, 𝐷𝑅} =
{−2, 2} means we splice together the input at current frame 

minus 2 and the current frame plus 2. Fig.3 shows this 

pictorially. The temporal context windows could be set 

independent for each layer in deep TDNN. From our primary 

experimental results, we find a similar conclusion as in [32] 

that the model works best to splice together increasingly wide 

context as we go to higher layers of the network.  

3.3. SVD 

In this paper, we propose to further reduce the model size of 

deep TDNN using SVD. Fig.4 show how SVD is applied to a 

deep TDNN. For a 𝑀 × 𝑁  weight matrix 𝑊  in the deep 

TDNN architecture, if we apply SVD on it, we get: 
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Figure 4: Model compression in a restructured TDNN by SVD. 

𝑊𝑀×𝑁 = 𝑈𝑀×𝐶∑𝐶×𝐶𝑉𝐶×𝑁
𝑇     (3) 

where ∑ is a diagonal matrix with 𝑊’s singular values on the 

diagonal in the decreasing order. We then truncate, retaining 

only the top 𝐾 singular values and the corresponding singular 

vectors from 𝑈𝑀×𝐶  and 𝑉𝐶×𝑁
𝑇  (donated by 𝑈𝑀×𝐾  and 𝑉𝐾×𝑁

𝑇 , 

respectively)： 

𝑊𝑀×𝑁 ≈ 𝑈𝑀×𝐾∑𝐾×𝐾𝑉𝐾×𝑁
𝑇 = 𝑈𝑀×𝐾𝑃𝐾×𝑁  (4) 

where 𝑃𝐾×𝑁 = ∑𝐾×𝐾𝑉𝐾×𝑁
𝑇 . In this way, the weight matrix 𝑊 

is decomposed into two smaller matrix 𝑈  and 𝑃 . Fig.4(A) 

shows a layer in original TDNN with weight matrix 𝑊𝑀×𝑁. 

After SVD reconstruction, a bottleneck SVD layer of 𝐾 nodes 

is inserted between two large hidden layers, shown in Fig.4(b). 

With 𝐾 properly chosen, the number of multiplications as well 

as the model parameters could be reduced from 𝑀 × 𝑁  to 

(𝑀 + 𝑁) × 𝐾. In this paper, we apply SVD to approximate all 

hidden layers of the proposed deep TDNN network, including 

the input layer.  

3.4. Training procedure 

The   training   procedure for   the deep TDNN based acoustic 

model with SVD approximation is as follows.   

 Train a full rank TDNN based acoustic model. 

 Add bottleneck layers initialized by SVD of the full-

rank weight matrices to the deep TDNN, layer by layer, 

starting from the input layer.  

 Fine-turn the SVD compressed deep TDNN to 

compensate the precision loss caused by SVD. 

The advantages of the proposed method compared to the 

regular full-rank TDNN is obvious, since we could train a 

larger TDNN first, then compress it by controlling the nodes 

of bottleneck layers to meet the model complexity 

requirements afterwards.  

4. Experimental Results 

4.1. Experimental setups 

A Chinese Mandarin speech corpus recorded by a professional 

female broadcaster, both phonetically and prosodically rich, is 

used in our experiments. The database contains 20,000 

utterances, with each utterance having around 13 words. The 

training/validation/test split is 8:1:1 for all the experiments. 

The speech signal is sampled at 16 kHz. The 60-dim line 

spectral pairs (LSP) features, 1-dim band aperiodicity (BAP) 

feature, 1-dim logarithmic fundamental frequency (log F0) 

together with their delta and delta-delta deviation, and 

voiced/unvoiced (V/UV) flag are extracted with frame shift 5-

ms, and frame length 25-ms using WORLD [33]. The input 

features used here are the encoded 379 dimensional one-hot 

and numerical linguistic features obtained from our speech 

synthesis front-end. Both the input and output features are 

normalized to the zero-mean and unit-variance before model 

training. 

To decrease the computation cost, the ReLUs function is 

employed as the activation function for deep TDNN training. 

All the full-rank deep TDNN based systems have four hidden 

layers in our experiments. We use exponential decaying 

learning rate scheduling for TDNN related systems’ training. 

The initial learning rate is set to be 0.002 for full-rank TDNN 

training, and 0.0001 for SVD-compressed TDNN training. 

The learning rate decays by a factor 0.5 for the first few 

epochs, and increased to 0.9 for annealing in the training 

epoch. 

For comparison purposes, two types of systems (described 

in Section 2), which are FNN and LSTM respectively, are 

built. These two systems serve as two baselines in this paper. 

The FNN based systems consist of four hidden layers, with 

each layer having 256 nodes. For LSTM based systems, we 

use three LSTM layers with 128 memory blocks for each layer 

to capture the long time span contextual effect of the training 

data. The model size of baseline FNN and LSTM are around 

1.30 and 1.78 MB, respectively.  

 For testing, the outputs of all the systems are fed into a 

parameter generation module to generate smooth feature 

parameters with the dynamic constraints. LSP based formant 

enhancement is used to improve the quality of synthesized 

speech.  

We evaluate the performance of the systems both 

objectively and subjectively. For objective evaluation, log 

spectral distance (LSD), BAPs distortion (BAPD), V/UV error 

rate and root mean squared error (RMSE) of the log F0 are 

measured. For subjective evaluation, we use both AB 

preference test and mean of score (MOS) test. 14 native 

listeners with no hearing difficulties participate in the 

evaluation using headphones.  

4.2. Evaluation of TDNN with various temporal contexts  

Since TDNN has not been applied to TTS tasks ever before, 

we start exploration from a deep TDNN system which is 

short-sighted. As donated by TDNN-A, the system uses a 

narrow window of {-2, -2} in each hidden layers. We then 

increase the temporal context windows successively, finally 

reaching a context window of 30 frames. Tab.1 summarizes 

the objective measures for different systems. For fair 

comparison, the model size of the full-rank deep TDNN 

related systems (from TDNN-A to TDNN-D) are controlled at 
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Table 1: Objective measures of different systems with various layerwise temporal context windows. 

Systems Network 

Context 

Layerwise Context Window Objective Measures 

1 2 3 4 5 LSD 

(dB) 

BAPD 

(dB) 

V/UV 

Error (%) 

RMSE 

Log F0 

FNN [-8, 8] [-8,8] {0} {0} {0} {0} 5.013 0.186 3.561 0.113 

LSTM --- --- --- --- --- --- 4.772 0.163 3.186 0.103 

TDNN-A [-8, 8] {-2,2} {-2,2} {-2,2} {-2,2} {0} 4.873 0.179 3.401 0.111 

TDNN-B [-10, 10] {-2,2} {-2,2} {-3,3} {-3,3} {0} 4.852 0.176 3.325 0.109 

TDNN-C [-15, 10] {-2,2} {-3,2} {-5,3} {-5,3} {0} 4.821 0.171 3.248 0.106 

TDNN-D [-18, 12] {-3,2} {-3,2} {-6,4} {-6,4} {0} 4.810 0.167 3.194 0.105 

SVD-

TDNN-C 

[-15, 10] {-2,2} {-3,2} {-5,3} {-5,3} {0} 4.831 0.172 3.306 0.106 

 

 

around 1.30 MB as well. Comparing TDNN-A through 

TDNN-D, we could find that all the objective measures 

consistently drop with the increasing of the length of temporal 

context window. With context window equals to [-18, 12], 

system TDNN-D beats baseline FNN in all objective measures. 

Meanwhile, it also achieves comparable performance to 

LSTM, but with less than 73% model size, and 2.09 times 

(Compared to LSTM) speech parameter generation speed in 

our experimental results.  

 

Figure 5: Naturalness MOS results of different systems. 

We also conduct the subjective MOS evaluations to 

compare the performance of different systems, and the results 

are presented in Fig.5. From the results, we could find that 

system TDNN-C achieves comparable performance to both 

system LSTM and TDNN-D. This indicates longer time 

window does not bring any further benefits in the subjective 

evaluation. Such suggests that we definitely need to model 

long-term relations between speech samples in TTS tasks, but 

the length of dependency modeling does not need to be as long 

as the length of input sequence. This conclusion is consistent 

with that in [34]. Besides the comparable MOS score with the 

baseline system LSTM, system TDNN-C generates 2.34 times 

faster than LSTM, making it very competitive in embedded 

production environments. Therefore, TDNN-C is selected as 

the initial systems for SVD-compressed deep TDNN training. 

4.3. Evaluation of SVD-compressed TDNN 

We then apply SVD on all the hidden layers of TDNN-C to 

further reduce the footprint and computation cost of the model 

(donated as SVD-TDNN-C). The objective  evaluation  results  

 

 

 

are shown in Tab.1. It’s seen the differences of the objective 

measures between the TDNN-C and SVD-TDNN-C are not 

obvious. Meanwhile, from our experimental results, the model 

size is further reduced (from 1.30 MB to 0.74 MB) and the 

generation of speech parameter becomes much faster (from 

2.34 times to 2.45 times) after the SVD compression.  

Table 2: Preference scores (%) of subjective evaluation 

with confidence level of 0.95. 

SVD-TDNN-C TDNN-C LSTM FNN 𝒑-value 

51.9 48.1   0.782 

47.8  52.2  0.768 

67.7   32.3 0.001 

 

We further conduct an AB preference listening test to 

evaluate the influence of SVD from Tab.2, we could see that 

there is no preference among system SVD-TDNN-C, TDNN-

C and LSTM. Meanwhile, system SVD-TDNN-C receives 

much more preference than FNN system. Also, it’s worth 

noticing that system SVD-TDNN-C drastically reduces model 

complexity and speech parameter generation time.  

5. Conclusions 

In this paper, we present our work of building a deep TDNN 

based embedded SPSS, which requires low disk footprint, 

memory and latency. The TDNN could model long short-term 

temporal dependencies with inference cost comparable to 

standard FNN. We use temporal subsampling enabled by deep 

TDNN to reduce computational complexity. Then we 

compress deep TDNN using SVD to further reduce model 

complexity, which are motivated by the goal of building 

embedded SPSS systems which can be run efficiently on 

mobile devices. Our experimental results show the proposed 

deep TDNN with SVD compression could generate 

synthesized speech with better speech quality than FNN and 

comparable speech quality to LSTM,  while drastically reduce 

model complexity and speech parameter generation time.  
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