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Abstract
We present our first efforts towards building a single multi-
lingual automatic speech recognition (ASR) system that can
process code-switching (CS) speech in five languages spoken
within the same population. This contrasts with related prior
work which focuses on the recognition of CS speech in bilingual
scenarios. Recently, we have compiled a small five-language
corpus of South African soap opera speech which contains ex-
amples of CS between 5 languages occurring in various con-
texts such as using English as the matrix language and switch-
ing to other indigenous languages. The ASR system presented
in this work is trained on 4 corpora containing English-isiZulu,
English-isiXhosa, English-Setswana and English-Sesotho CS
speech. The interpolation of multiple language models trained
on these language pairs enables the ASR system to hypothesize
mixed word sequences from these 5 languages. We evaluate
various state-of-the-art acoustic models trained on this 5-lingual
training data and report ASR accuracy and language recogni-
tion performance on the development and test sets of the South
African multilingual soap opera corpus.
Index Terms: code-switching, automatic speech recognition,
multilinguality, South African languages

1. Introduction
South Africa is a multilingual society with 11 official lan-
guages and since the majority of South Africans are multilin-
gual, code-switching (CS) occurs commonly in everyday con-
versations. CS being a part of daily life, the phenomenon also
commonly occurs in radio and TV broadcasts which makes
broadcast archives valuable sources of CS speech data. We
have recently compiled a CS speech corpus which contains 14.3
hours of language-balanced speech compiled from soap opera
broadcasts. Our research focuses on designing the acoustic and
language models that can operate on this type of multilingual
CS speech.

The impact of CS and other kinds of language switches on
the performance of speech-to-text systems has recently received
research interest, resulting in several robust acoustic model-
ing [1–9] and language modeling [10–15] approaches for CS
speech. In previous work, the Radboud team has explored
the ASR and code-switching detection performance of various
acoustic models applied to CS Frisian-Dutch speech [8, 9, 16].
We further proposed several ways of increasing the amount of
available training speech data by applying several automatic
transcription strategies [17, 18].

Meanwhile, the Stellenbosch team has been developing a
CS ASR system for isiZulu-English CS speech with a focus on

This work was performed while the first author was on a research
visit to the Stellenbosch University.

language modeling [7, 15]. The improvements in this system
obtained by using speech data from different CS language pairs
are explored in another submission to this conference [19].

In this work, we describe our joint efforts to build a
5-lingual ASR system that can recognize all five languages
present in the South African Soap Opera Corpus, namely En-
glish, isiZulu, isiXhosa, Setswana and Sesotho. For this pur-
pose, we develop acoustic and language models that enable lan-
guage switches between these five languages. Unlike the prior
work focusing on bilingual CS scenarios, this ASR system can
hypothesize CS word sequences containing all five languages.

We first use monolingual and bilingual text to train a lan-
guage model with words from all target languages. The only
source of CS text is the transcriptions of the training speech data
which contain 156k words in total. Then, we train several re-
cently proposed acoustic models on the four different CS pairs
present in the corpus and apply these to the combination of all
development and test data. We report 5-lingual ASR accuracies
and language recognition (LR) performance of the developed
ASR system.

This paper is organized as follows. Section 2 introduces the
demographics and the linguistic properties of the target South
African languages. Section 3 summarizes the South African
Soap Opera Corpus that has recently been collected for CS
speech research. Section 4 describes the details of the 5-lingual
CS ASR system. The experimental setup is described in Sec-
tion 5 and the ASR and LR performance of the described ASR
system is presented in Section 6. Section 7 concludes the paper.

2. Target South African Languages
The linguistic and phonetic properties of the target indigenous
languages are given in the following paragraphs. All four lan-
guages belong to Southern Bantu language family. isiZulu and
isiXhosa are Nguni languages and linguistically similar. Fur-
thermore, Sesotho and Setswana belong to the Sotho family
and are also linguistically similar. All are agglutinative, tonal
and click languages written in the Latin alphabet. The informa-
tion presented in the coming paragraphs is extracted from the
Ethnologue1, UCLA Language Materials Project2 and Census
documents3. We refer the reader to these sources (and the ref-
erences therein) for further details.

The isiZulu language has 11.5M native and 15.5M second
language (L2) speakers mostly living in South Africa. As many
other indigenous languages in South Africa, it has relatively
recently become a written language. The Zulu phonology is
characterized by a simple vowel inventory with 5 vowels and
a highly marked consonantal system with ejectives, implosives

1https://www.ethnologue.com/
2http://www.lmp.ucla.edu/
3http://www.statssa.gov.za
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Table 1: Duration of English, isiZulu, isiXhosa, Setswana,
Sesotho monolingual (emdur, zmdur, xmdur, tmdur, smdur) and
CS (ecsdur, zcsdur, xcsdur, tcsdur, scsdur) utterances [22]

English-isiZulu
Set emdur zmdur ecsdur zcsdur total

Train 1.55h 1.55h 45.86m 56.99m 4.81h
Dev - - 4.01m 3.96m 8m
Test - - 12.76m 17.85m 30.4m
Total 1.55h 1.55h 1.04h 1.31h 5.45h

English-isiXhosa
Set emdur xmdur ecsdur xcsdur total

Train 65.22m 53.55m 18.04m 23.73m 160.54m
Dev 2.86m 6.48m 2.21m 2.13m 13.68m
Test - - 5.56m 8.78m 14.34m
Total 68.08m 60.03m 25.81m 34.64m 3.143h

English-Setswana
Set emdur tmdur ecsdur tcsdur total

Train 40.4m 30.96m 34.37m 34.01m 139.74m
Dev 0.76m 4.26m 4.54m 4.27m 13.83m
Test - - 8.87m 8.96m 17.83m
Total 41.16m 35.22m 47.78m 47.24m 2.86h

English-Sesotho
Set emdur smdur ecsdur scsdur total

Train 49.34m 35.32m 23.02m 34.04m 141.72m
Dev 1.09m 5.05m 3.03m 3.59m 12.77m
Test - - 7.80m 7.74m 15.54m
Total 50.43m 40.37m 33.85m 45.37m 2.83h

and clicks [20]. Zulu has borrowed many words from other lan-
guages, especially Afrikaans and English.

The second language, isiXhosa, has 8M native and 11M
L2 speakers mostly living in South Africa. IsiXhosa has 58
consonants including 18 click consonants, 10 vowels and two
tones. It is historically related to the Khoisan Languages, i.e.
languages of southern Africa hunter-gatherer populations, and it
has borrowed many words from these languages and later from
English and Afrikaans.

Thirdly, Sesotho is spoken by 6M native and 8M L2 speak-
ers in South Africa and Lesotho. It has 9 vowels and 39 conso-
nants including ejectives, clicks and uvular trill. Various sound
changes are observed involving vowels and consonants includ-
ing various sorts of assimilation, elision, vowel merging and
devoicing [21]. The fourth and the final language, Setswana, is
spoken by 5M native and 7.5M L2 speakers in South Africa and
Botswana. It includes 7 vowels and 29 consonants, 3 of which
contain clicks. There are two tones which are orthographically
not marked. Despite a high mutual intelligibility with Sesotho,
they are generally considered to be two separate languages.

3. South African Soap Opera Corpus
A multilingual corpus containing examples of CS speech has
recently been compiled from 626 South African soap opera
episodes. The ELAN media annotation tool [23] has been used
to segment and annotate the data. The spontaneous nature of the
speech and the presence of various CS types makes this type of
speech interesting for designing an ASR system which is ex-
pected to operate on CS speech from South Africa.

The corpus is still under development and the version we
used corresponds to the language-balanced dataset with 14.3

hours of speech introduced in [22]. The data contains exam-
ples of CS between South African English, isiZulu, isiXhosa,
Setswana and Sesotho. The corresponding code-switch lan-
guage pairs are referred to as English-isiZulu, English-isiXhosa,
English-Setswana, and English-Sesotho. An overview of the
statistics for the training (Train), development (Dev) and test
(Test) sets for each language pair is given in Table 1. Each data
set is described in terms of its total duration as well as the dura-
tion of the monolingual (m) and CS (cs) segments.

The soap opera speech is typically fast, spontaneous and
may express emotion, with a speech rate that is between 1.22
and 1.83 times higher than prompted speech in the same lan-
guages. Among the 10 343 code-switched utterances in the cor-
pus, 19 207 intra-sentential language switches are observed. In-
sertional code-switching with English words is observed to be
most frequent. Intra-word CS occurring when English words
are supplemented with Bantu affixes in an effort to conform to
Bantu phonology is also observed. Note that the test utterances
always contain CS and are never monolingual.

4. 5-lingual CS ASR System

With the ultimate goal of an ASR system that can operate on
all South African languages and correctly process the language
switches, we build a language and an acoustic model that con-
siders the word inventory of the five languages of our corpus.
We apply the ideas that have been shown to be useful in mono-
lingual scenarios to our multilingual CS system to determine the
ASR performance that can be obtained using modern acoustic
and language models.

For language modeling, both monolingual and CS text re-
sources were used in varying quantities based on availability.
CS text is practically non-existent and CS in textual resources
hardly occurs. As is common, we use the transcriptions of the
CS speech data for language model training purposes. Since
the CS text constitutes a relatively small component of all avail-
able text data, we merge all available CS text to train a 5-
lingual CS language model. Secondly, all monolingual text
from the African languages is merged to train a 4-lingual LM.
These models are later interpolated with the English monolin-
gual model that has been trained on a much larger monolingual
corpus. Following this strategy provided the lowest perplexities
on the transcriptions of the development data in pilot experi-
ments.

For training the acoustic models, we have only used the bal-
anced corpora without including any other available monolin-
gual corpora. On this small amount of data, we explore the per-
formance of various NN architectures including conventional
fully connected DNNs, time-delay NN (TDNN) [24,25] and its
combination with recurrent NN architectures such as long short-
term memory (LSTM) and bidirectional LSTM [26] using dif-
ferent acoustic features. Since most of the target languages are
tonal, we also extract and attach pitch information to the acous-
tic features.

Together with the ASR performance, we also evaluate the
LR accuracies of the described ASR systems to gain an insight
into how well it can distinguish between the target languages,
especially between those most similar (isiZulu-isiXhosa and
Setswana-Sesotho). To achieve this, we analyze the confusion
in the language tags assigned to each word during recognition.
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Table 2: The total number of words in each subcorpus used for
LM training

CS Monolingual
Language pairs # of Words Language # of Words
English-isiZulu 52k English 470M
English-isiXhosa 32k isiZulu 3.2M
English-Setswana 35k isiXhosa 1.4M
English-Sesotho 35k Setswana 2.8M
All CS text 156k Sesotho 0.2M

5. Experimental Setup
5.1. Language Modeling

The available monolingual and CS text in total number of words
is presented in Table 2. The texts used for monolingual LM
training were collected from various sources which include on-
line newspapers, magazines and newsletters (South African En-
glish, isiZulu, isiXhosa, Setswana), web text from the Leipzig
Corpus Collection [27] (South African English, isiZulu, isiX-
hosa, Sesotho), parliamentary bulletins (isiXhosa, Setswana),
and the Babel corpus transcriptions (isiZulu).

The language models used in these experiments are 5-
lingual 3-gram and 5-gram with interpolated Kneser-Ney
smoothing [28] for recognition and lattice rescoring respec-
tively. We interpolate: (1) a CS 3-gram trained on all CS text,
(2) a 4-lingual 3-gram trained on all monolingual text from 4
African languages, and (3) an English 3-gram to obtain the fi-
nal 3-gram LM. The interpolation weights are learned on the
transcriptions of the development data. We have observed that
assigning relatively higher weights (0.85-0.9) to the CS LM re-
duces the perplexities considerably. The final 3-gram model
has perplexities of 412 and 617 on the development and test
transcriptions respectively. For the final 5-gram model, the cor-
responding figures are 402 and 605.

5.2. Acoustic Modeling

The recognition experiments are performed using the Kaldi
ASR toolkit [29]. We train a conventional context depen-
dent Gaussian mixture model-hidden Markov model (GMM-
HMM) system with 25k Gaussians using 39 dimensional mel-
frequency cepstral coefficient (MFCC) features including the
deltas and delta-deltas to obtain the alignments for training the
NN models.

As a reference, DNNs with 6 hidden layers and 2048 sig-
moid hidden units at each hidden layer are trained on the
40-dimensional log-mel filterbank (FBANK) features with the
deltas and delta-deltas. DNN training is performed by mini-
batch Stochastic Gradient Descent with an initial learning rate
of 0.008 and a minibatch size of 256. The time context size is
11 frames achieved by concatenating ±5 frames. We further
apply sequence training using a state-level minimum Bayes risk
(sMBR) criterion [30].

In addition, we train TDNN (3 standard, 6 time-delay lay-
ers), TDNN-LSTM (1 standard, 6 time-delay and 3 LSTM
layers) and TDNN-BLSTM (1 standard, 2 time-delay and 3
BLSTM layers) acoustic models with the lattice-free maximum
mutual information (LF-MMI) criterion [31] according to the
standard recipe provided for the Switchboard database in the
Kaldi toolkit (ver. 5.2.99). With these models, we use 40-
dimensional MFCCs together with 3-dimensional pitch features
(appended when mentioned). The training parameters provided

Table 3: WER (%) on development and test sets provided by
different acoustic models

AM Features LM Dev Test Total
DNN 40-FBANK 3G 65.8 66.9 66.5
TDNN 40-MFCC 3G 61.2 60.2 60.6
TDNN+LSTM 40-MFCC 3G 59.5 58.3 58.8
TDNN+BLSTM 40-MFCC 3G 57.0 57.3 57.2
TDNN+BLSTM 40-MFCC+Pitch 3G 55.9 56.2 56.1
TDNN+BLSTM 40-MFCC+Pitch 3G+5G 55.5 55.7 55.6

in the recipe are used without performing any parameter tun-
ing. The 3-fold data augmentation [32] is applied to the training
data.

5.3. Pronunciation Lexicon

The pronunciation lexicon contains 23 453 words of which 5965
are English, 7448 are isiZulu, 5975 are isiXhosa, 1625 are
Setswana and 2437 are Sesotho. Due to the pronunciation vari-
ants, the lexicon has 30 489 entries in total. The phonetic al-
phabet contains a total of 284 phones of which 45 are English,
49 are isiZulu, 66 are isiXhosa, 59 are Setswana and 65 are
Sesotho. The ASR experiments are closed vocabulary implying
that there are no out-of-vocabulary words in the development
and test data.

6. Results and Discussion
We present the results of the ASR experiments in this section.
The ASR quality is quantified by calculating the word error rate
(WER) with the language tags of the words removed. The lan-
guage recognition performance is later evaluated in the form of
a confusion matrix with an extra row and column to accommo-
date insertion and deletion errors.

6.1. ASR Results

First, we investigate the best performing NN architecture and
then we move to a detailed analysis of the recognition accuracy
on each language component. The ASR results obtained on the
development and test sets using different acoustic models are
presented in Table 3.

A conventional fully connected DNN provides a total WER
of 66.5%, while using a TDNN model brings considerable im-
provements reducing the WER to 60.6%. Adding recurrent lay-
ers helps by further reducing the total WER to 58.8%. With
a WER of 57.2%, the ASR system using bidirectional recur-
rent layers together with time-delay layers has the lowest WER
among all the aforementioned acoustic models.

We further explore the impact of appending pitch features
and lattice rescoring using a larger n-gram language model. Us-
ing pitch features is common practice when building ASR sys-
tems for tonal languages. In this scenario, using pitch features
provides an absolute improvement of 1.7% leading to a WER
of 56.1%. 5-gram lattice rescoring brings further marginal im-
provements reducing the total WER to 55.6%. In the remaining
experiments, we analyze the output of this ASR system to gain
better insight to language-specific ASR performance and lan-
guage recognition performance.

The language-specific recognition accuracies for each CS
pair and dataset are shown in Table 4. From these results, it can
be seen that there is a large performance gap between the gen-
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Table 4: WER (%) on the development and test sets of each CS subcorpus in provided by the best recognition system presented in
Table 3 - The total number of words in each subcorpus is given in parentheses.

CS Pair (L1-L2) L1-L2 L1 L2

Dev Test Dev Test Dev Test
English-isiZulu 44.2 (1572) 52.6 (5658) 33.7 (838) 38.6 (2459) 56.1 (734) 63.3 (3199)
English-isiXhosa 51.9 (2300) 62.8 (2651) 39.6 (1153) 44.9 (1149) 64.3 (1147) 76.5 (1502)
English-Setswana 56.7 (3707) 52.3 (4939) 38.0 (1170) 33.9 (1970) 65.4 (2537) 64.6 (2969)
English-Sesotho 62.6 (3067) 59.1 (4054) 41.5 (843) 41.9 (1794) 70.6 (2224) 72.8 (2260)

Table 5: Confusion matrices of the hypothesized language tags
on the development and test data

(a) Dev

ENG ZUL XHO TSN SOT DEL
ENG 3336 152 25 87 72 327
ZUL 84 513 10 11 17 99
XHO 166 313 531 25 23 89
TSN 373 153 20 832 626 535
SOT 361 209 11 528 732 386
INS 159 57 8 52 63 0

(b) Test

ENG ZUL XHO TSN SOT DEL
ENG 5953 309 62 174 165 694
ZUL 474 2010 64 88 120 443
XHO 262 496 447 35 41 221
TSN 411 138 20 875 810 725
SOT 398 180 20 680 457 530
INS 211 77 16 62 56 0

eral ASR performance on English and the African languages.
English being spoken in all 4 CS pairs, the amount of English
training data is much larger than it is for the other languages.

A second issue to be addressed is the poor performance for
Sesotho. Even though Sesotho has a similar amount of acoustic
training data as Setswana, there is very little textual data avail-
able in this language for LM training (0.2M words compared to
the 2.8M of Setswana). This results in WER that are higher than
70%, while the WER for the English words is approximately
42%.

A final observation is the similar performance on the de-
velopment and test data of the Sotho languages (Setswana-
Sesotho) implying that the ASR performance on monolingual
segments and segments with CS are rather similar. It is worth re-
marking that the utterances in the test sets all contain CS, while
some utterances in the development data (except for English-
isiZulu) are monolingual which are expected to be easier to
recognize. However, we only observe this pattern in isiXhosa
where there is a performance gap between the development and
test sets in contrast to the Sotho languages. Having no mono-
lingual utterances in both sets and a large difference in devel-
opment and test set size (which may result in larger variance
in WERs), we do not consider English-isiZulu results in this
comparison.

6.2. LR Results

Using the language tags assigned to each word by the best-
performing ASR system in Table 3 for the development and
test sets, the confusion matrices shown in Table 5 are ob-

tained. Confusions between the isiZulu-isiXhosa and Setswana-
Sesotho language pairs are marked in purple and green respec-
tively. This is done to highlight the cells where higher confusion
is expected due to the similarity between the two languages.

Focusing firstly on isiZulu-isiXhosa, we see that the confu-
sion occurs mostly in a single direction, i.e. many more isiX-
hosa words are identified as isiZulu words. In the second lan-
guage pair, Setswana-Sesotho, the confusions occur in both di-
rections in both development and test sets. The language recog-
nition performance of the ASR system is significantly worse
than any other language couple. This can be explained by the
greater linguistic similarity between the languages and their
larger intersection in the phoneme set and vocabulary. The
lower acoustic and written resources further reduces the LR per-
formance of the ASR system on the Sotho languages.

7. Conclusion
We present a first 5-lingual CS ASR system that is designed to
recognize CS speech in 5 South African languages. Using a re-
cently compiled soap opera speech corpus, we explore how well
modern NN-based acoustic models can deal with the language
switches given the limited availability of resources for the tar-
get languages. Language recognition performance implicit in
the ASR is also evaluated, especially between the linguistically
similar languages. We believe that these first findings are en-
couraging and provide insight into the challenges in building
a unified CS system for multilingual countries such as South
Africa.
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