
Identification and classification of fricatives in speech using zero time
windowing method

RaviShankar Prasad and B. Yegnanarayana

Speech Processing Laboratory,
International Institute of Information Technology, Hyderabad, India

ravishankar.prasad@research.iiit.ac.in, yegna@iiit.ac.in

Abstract
Fricatives are produced by creating a turbulence in the air–
flow by passing it through a stricture in the vocal tract cav-
ity. Fricatives are characterized by their noise–like behavior,
which makes it difficult to analyze. Difference in the place
of articulation leads to different classes of fricatives. Identifi-
cation of fricative segment boundaries in speech helps in im-
proving the performance of several applications. The present
study attempts towards the identification and classification of
fricative segments in continuous speech, based on the statisti-
cal behavior of instantaneous spectral characteristics. The pro-
posed method uses parameters such as the dominant resonance
frequencies, the center of gravity along with the statistical mo-
ments of the spectrum obtained using the zero time window-
ing (ZTW) method. The ZTW spectra exhibits a high temporal
resolution and therefore gives accurate segment boundaries in
speech. The proposed algorithm is tested on the TIMIT dataset
for English language. A high identification rate of 97.5% is
achieved for segment boundaries of the sibilant fricative class.
Voiced nonsibilants show a lower identification rate than their
voiceless counterparts due to their vowel–like spectral charac-
teristics. A high classification rate of 93.2% is achieved be-
tween sibilants and nonsibilants.
Index Terms: fricatives, sibilant, nonsibilant, zero time win-
dowing, dominant resonances, skewness, kurtosis.

1. Introduction
Fricatives comprise the largest set of consonants in English lan-
guage, given the different manners of articulation. Fricative
sounds in speech are produced by forcing the air through a con-
struction in the oral cavity. A turbulence is generated in the air–
flow at this constriction, which serves as the source for fricative
sounds. The cavity following the constriction or the place of
articulation dictates the system response. Different classes of
fricatives are dependent of the pair of articulators forming the
constriction. The English language has fricatives produced with
constrictions mainly at four places, namely, labiodental (voiced
/v/, voiceless /f/), linguadental (voiced /dh/, voiceless /th/), alve-
olar (voiced /z/, voiceless /s/) and palatal (voiced /zh/, voiceless
/sh/) [1–3]. The present study spans around these classes of
fricatives. The glottal fricative sound (voiceless /h/) exhibits
spectral characteristics closer to the abutting vowels and there-
fore is not included in the present study. The alveolar and
palatal fricative classes are called sibilants, and the other two
classes are called nonsibilants. Sibilants are identified with rel-
atively high intensity and a defined spectral structure. The dis-
tinction in the acoustic properties of these two classes arise due
to the difference in cavity structures. Fricatives are also dis-
tinguished as voiced or voiceless depending on the presence of
phonation (vocal fold vibration) during their production.

Attempts have been made to derive acoustic characteristics
of fricatives for the identification of segment boundaries, and
classification based on the place of articulation [3–9]. Frica-
tive identification in speech is an important module for several
speech applications, such as speech recognition, voice activ-
ity detection, speaker identification, audio search etc. Spec-
tral properties of fricatives are dictated by the dimensions of
the cavity beyond the place of articulation. A longer the cavity
length leads to a well–defined spectrum. It is therefore that alve-
olars and palato–alveolars have distinct spectral shape, whereas
dentals and labiodentals exhibit a relatively flat spectrum. The
peak frequency location for palato–alveolar /sh/ and /zh/ occur
mostly in mid–frequency band (around 2.5–4.5 kHz). Alveo-
lars /s/ and /z/ are produced with a shorter anterior cavity, and
therefore exhibit spectral prominence in the 4.5–6 kHz range.
Labiodentals /f, v/ and linguadentals /th, dh/ are characterized
by a relatively flat spectrum with no particular range of spectral
prominence [4].

Studies have been attempted to delineate the acoustic corre-
lates of fricatives in continuous speech and isolated utterances
in English and other languages [3, 4, 10–12]. Parameters such
as the durations of frication noise, spectral moments, spectral
slope, amplitude energy, and zero crossing rate, have been used
to classify fricatives based on their place of articulation [13–15].
Energy in different spectral bands, formant transition behavior
around consonant–vowel (CV) boundaries, and other parame-
ters have also been popular cues for the task. Features derived
from methods based on filter–bank analysis, critical–band fil-
tering, short–term adaptation, forward masking and synchrony
detection have also been proposed [3, 5–7]. Another study uses
the zero–crossing rate of the speech to detect unvoiced fricatives
in continuous speech [17]. The linear prediction (LP) spectral
peak locations have also been used as parameters to classify
fricatives [18] along with the features based on presence of voic-
ing, intensity of frication, and spectral shape. Generic automatic
speech recognition (ASR) modules are also used to determine
the onset and offset of fricatives in continuous speech [19, 20].
A detailed study of the acoustic characteristics for fricatives in
English language has been presented in [4, 11]. A study based
on the first four statistical moments of the fricative spectra em-
ployed to classify different fricative classes yielded a result of
80% [16]. The noise like structure in fricative regions makes
it difficult to characterize the production behavior. The present
study is motivated towards studying the production cavity be-
havior for different fricatives for the task of identification and
classification.

The paper introduces spectral and statistical parameters de-
rived from a high resolution spectra, obtained from the zero time
windowing (ZTW) analysis of speech. The ZTW method esti-
mates the spectral characteristics at each sample, using a small
duration window. The spectral characteristics of the windowed
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segment is derived using the numerator of group delay func-
tion. The high temporal resolution helps in resolving accurate
boundaries for fricative segments, while the spectral moments
help to highlight the distinction in spectral structure. The paper
is organized as follows: Section 2 discusses the zero time win-
dowing (ZTW) method. Section 3 discusses the identification
of fricative segments in speech. Section 4 presents the classifi-
cation for fricative classes, and discusses the results. Section 5
gives a summary of the paper.

2. ZTW method and dominant resonance
based representation the system response

Zero time windowing (ZTW) method [23] uses a heavily decay-
ing window, given by

w1[n] =

{
0, n = 0,

1/(4sin2(πn/2N)), n = 1, 2, . . . ,N− 1,

(1)
where N is the length of the window (in samples) correspond-
ing to a duration of l ms. The net windowed segment is given
as x[n] = s[n]w[n], where s[n] is the speech signal. The over-
all window w[n] = w2

1[n]w2[n] has a component w2[n], which
helps to reduce the window truncation effect and is given by,

w2[n] = 4cos2(πn/2N); n = 0, 1, . . . , N − 1. (2)

The application of w1[n] is equivalent to integration in the
spectral domain. The spectral features are obtained by differen-
tiating the numerator of the group delay (NGD) function, which
is given as,

g(ω) = XR(ω)X
′
R(ω) +XI(ω)X

′
I(ω), (3)

where X(ω)=XR(ω)+jXI(ω) is the discrete–time Fourier
transform (DTFT) of x[n], and X ′(ω)=X ′

R(ω)+jX
′
I(ω) is the

DTFT of nx[n]. Spectral characteristics of x[n] are represented
using Hilbert envelope of the differenced NGD (HNGD) func-
tion, which has a good resolution around the formants [24, 27].
HNGD spectra is computed at each sample leading to a high
temporal resolution.

3. Identification of fricative segment
boundaries in speech

The high temporal resolution obtained with the ZTW method
can help in accurate demarcation of acoustic segment bound-
aries in speech [26]. The dominant resonance frequency (DRF)
value is derived as the location of the strongest resonance peak
in the HNGD spectra. The DRF is concise and efficient rep-
resentation to study the significant changes in the production
cavity length during the production of speech [28]. This can
be attributed to correspondence of DRFs with the length of the
dominant cavity, if the entire length of the vocal tract is ap-
proximated using a single tube. The DRF contour is used to
identify the fricative segment boundaries in continuous speech.
The present study uses a window size of 10 ms to compute the
HNGD spectrum of the analysis segment, and hence obtain the
DRF contour.

Figure 1 shows the spectral information representation with
short–time Fourier transform (STFT) method, and the DRF con-
tour with ZTW method which highlight the acoustic segment
boundaries for fricative segments. Figures 1(a1) and 1(a2) show
spectrograms for utterance ‘situation’, obtained from female
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Figure 1: (a1) and (a2) Spectrograms for utterance ’situation’
by female and male speakers. (b1) and (b2) DRF contours ob-
tained from the ZTW analysis.

and male speaker in TIMIT, respectively. The spectrogram is
computed using STFT method with a window duration of 10
ms, with a shift of 5 ms. The phonetic boundaries for frica-
tives are observed in the figure at segments with an increased
high frequency energy concentration. However, the spectro-
gram representation based on STFT suffers from limited resolu-
tion, and hence it is difficult to demarcate the accurate phonetic
boundaries. Figures 1(b1) and 1(b2) show the corresponding
DRF contours obtained using the ZTW analysis with a window
length l = 10 ms. The consistency of the DRF contour to tran-
sit to higher frequency range, and the contrast in their behavior
for different fricative classes, can be noticed in both the fig-
ures. It can be observed that the vowel segments have DRFs in
a relatively lower frequency range (upto 1.5 kHz). This can be
attributed to the fact that voiced sounds are produced with rela-
tively open vocal tract cavity which acts as the dominant reso-
nance cavity, resulting in a lower value for DRF. Fricatives ex-
hibit a relatively smaller cavity which results in DRFs in higher
frequency range. A significant change in the length of the cavity
for the production of fricatives is reflected in the abrupt transi-
tion at their onset and coda regions, which presents the ability
of DRF contours to accurately identify phone boundaries.

Based on the contrast in DRF contours for voiced sounds,
fricative regions are identified as segments with DRFs in higher
frequency range. The DRF contour is obtained using the ZTW
analysis, using a window duration l = 10 ms. The seg-
ments with DRFs beyond the range of 1.5 kHz are demar-
cated as fricative segments. There is a likelihood of silence
and stops to also be detected along with fricatives. A silence
removal pre–processing based on the measure of single fre-
quency filter spectrogram is implemented [30]. The resonance
strength for the silence segments is generally very low com-
pared to fricative segments, and therefore silence can also be
removed by setting a threshold on the DRF strength values.
Performance for frication region detection in speech segments
is evaluated on a subset of the TIMIT database with 300 ut-
terances, comprising of 68 speakers (33 male and 35 female)
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Table 1: Results obtained for fricative boundary (Pphn), and
duration (Pdur), identification in continuous speech.

Phones # phones Pphn Pdur (%)
/s/sib 246 97.5 90

/sh/sib 93 100 94
/z/sib 142 90.8 80
/zh/sib 12 100 87

/th/non–sib 33 30.3 77.5
/f/non–sib 134 95 78.4

/dh/non–sib 99 40 76.5
/v/non–sib 68 12 68.4

Sib 493 97.5 89
Non–sib 179 45.3 75.2
Overall 334 72 82

[29]. Table 1 shows the results obtained using the proposed
fricative boundary identification method based on DRF con-
tour. The evaluation uses the manual boundary demarcations
provided in the dataset, as a reference for performance assess-
ment. The segments marked corresponding to the set of frica-
tives {/s/, /z/, /sh/, /zh/, /f/, /v/, /th/, /dh/} are evalu-
ated. The affricate segments are also detected using the given
method due to a similarity in their production characteristics.
But these segments have a relatively shorter duration and can be
avoided using a duration based threshold. The table gives the
results in terms of parameters Pphn, indicating the total num-
ber of corresponding phone onset and coda boundaries detected
correctly (in %), and Pdur indicating the proportion of dura-
tion detected (in %). It is observed in the table that the segment
boundary identification rate is higher for sibilants compared to
nonsibilants. This is due to the absence of a proper cavity struc-
ture for nonsibilants, which lead to their flat noise–like behav-
ior with a lower segment energy. The boundary identification
for the sibilants are closed to 97%, with 89% of the duration of
phones detected correctly. Nonsibilant segments with low SNR
are eliminated as silence which leads to a lower rate of their
identification. The nonsibilants /dh/ and /v/ are majorly voiced
in nature and hence not detected as fricatives. The results show
that the tracking of transition in DRFs from low to high fre-
quency range is a good measure to identify fricative segments
in speech.

4. Classification of fricatives based on
spectral parameters

Difference in the cavity structure results in a contrast in the
spectral structure for different fricative classes. Sibilants have
a relatively well–defined cavity structure and therefore the cor-
responding DRFs appear within tight clusters in high frequency
range. Nonsibilants lack a well–defined cavity beyond the place
of excitation, and therefore the DRF locations in these segments
are not bounded to a particular frequency range, but are spread
across the spectral plane. This distinction in the behavior of
DRFs can also be noted in Figs. 1(b1) and 1(b2) for different
fricative classes. DRFs corresponding to the segment for phone
/s/ (0–0.1 s region) are clustered beyond 4 kHz range, for both
the speakers. Similarly, DRFs for the phone /sh/ (∼ 0.5–0.6
s region) are clustered between 3–4 kHz range. DRFs are clus-
tered in a relatively narrow frequency range for /sh/, compared
to /s/ where the spread is larger. The presence of voicing does

not essentially alter this behavior. However, voicing does intro-
duce a prominent low frequency component which sometime
appears dominant in the instantaneous spectra.

The present study uses DRFs along with other spectral pa-
rameters, to classify fricatives in broad classes based on their
place of articulation. The following parameters are extracted
from the HNGD spectra.

• Dominant resonance frequencies (DRFs): The first two
dominant resonance frequencies (ρD1 and ρD2 ) and their
respective strengths (ρS1 and ρS2 ) are given by,

ρD1 = argmax
ωi

(H(ωi)), ρS1 = |H(ρD1)|, (4)

where ωi is the frequency location of ith peak in HGND
spectrum H(ω). The peak locations are identified at
zero–crossings of the differenced HNGD spectrum. The
value of ρD2 and ρS2 are computed for the resonance
peak with dominance behavior next to ρD1 .

• Spectral center of gravity (ρC ): The center of gravity
(COG) is computed to discriminate the concentration re-
gion of spectral energy. It is given by,

ρC =

∑
ω ωH(ω)∑
ωH(ω)

. (5)

• Spectral skewness (ρK ): Skewness is a measure of sym-
metry. It is the third central moment of the HNGD spec-
tra and is given by,

ρK =
(1/N)

∑
ω(H(ω)− µω)

3

σ3
ω

, (6)

where N is the total number of frequency bins, µω is
the first moment of the HGND spectrum, and σω is the
standard deviation.

• Spectral kurtosis (ρR): Kurtosis is a measure of the data
being a heavy–tailed or light–tailed relative to a normal
distribution. Data sets with high kurtosis exhibit a heavy
tail, or outliers, and with a low kurtosis exhibit light tails.
It is given by,

ρR =
(1/N)

∑
ω(H(ω)− µω)

4

σ4
ω

. (7)

• Ratio of spectral energies (ρE): The ratio of energies in
frequency range [0 – 2 kHz] vs. [2 kHz – 4 kHz], [2 kHz
– 4 kHz] vs. [4 – 6 kHz], and [4 kHz – 6 kHz] vs. [6 kHz
– 8 kHz] is used to highlight the spectral density.

Every HNGD spectrum is understood as a probability dis-
tribution for a random variable, which helps to obtain the first
four moments, namely the mean, variance, skewness, and kur-
tosis [4]. Skewness also refers to spectral tilt which dictates the
slope of the spectrum. A spectrum with a higher energy den-
sity in the low frequency range exhibits a negative tilt in the
spectrum. A spectrum with positive tilt and has more energy
concentration towards the high frequency range. Positive kurto-
sis values indicate a spectrum with relatively high peakedness,
while negative values indicate a relatively flatter distribution.
Figures 2(a) and 2(b) show histograms for the parameter ρC
obtained from segments of sibilants and nonsibilants, respec-
tively, in TIMIT dataset. The nonsibilants exhibit a flatter spec-
trum and therefore the center of gravity tends to appear in the
center of the spectral axis. The values of ρC appear centered
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Figure 2: Histograms for parameter ρC for (a) sibilants and (b)
nonsibilants.
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Figure 3: ρK vs. ρR for (a) sibilants and (b) nonsibilants.

around 5 kHz which suggests a shift in the spectral energy den-
sity to higher frequency range. Similar distinction in the behav-
ior of higher spectral moments can be noticed from Figs. 3(a)
and 3(b) which show the scatter plots of skewness and kurtosis,
for sibilants and nonsibilants respectively. Both the classes ex-
hibit similar skewness values bounded in a small positive range
[0 − 5]. The values for kurtosis show relatively higher values
for nonsibilants due to the higher number of spectral peaks.

The present study uses SVM classification method to dis-
criminate between different fricative classes. The LibSVM
package implementation is used [31]. The proposed set of pa-
rameters is obtained for 500 instances of each fricative class,
uttered by different male and female speakers, in the TIMIT
dataset. The speech segments corresponding to fricatives are
obtained by the manual transcription provided in the dataset. A
support vector machine (SVM) is trained using the parameter
set. The classification rate (α), obtained on the test dataset of
TIMIT using the proposed parameter set and MFCC is shown
in Table 2.

Table 2: Classification results between sibilant and nonsibilant
fricatives.

Methods Proposed MFCC
α (in %) 93.2 70

The results show that the task of fricative classification is
performed with a good rate using the proposed parameter set.
The classification between sibilants and nonsibilants is obtained

Table 3: Classification results between place of articulation
(POA) for sibilant fricatives.

Methods palatal vs. alveolar /s/ vs. /sh/ /z/ vs. /zh/
α (in %) 73 70 72

at a high rate of 93%, compared to MFCCs, which result in a
rate of 70%. The classification rate for different place of artic-
ulation for sibilants results in 73% accuracy as shown in Table
3. Further studies are planned to improve segment boundary
identification and classification of nonsibilants.

5. Summary and conclusions
A new method for the identification of fricative regions in con-
tinuous speech is proposed in this paper. This DRF based rep-
resentation highlights the production characteristics with good
resolution which gives accurate segment boundaries. Perfor-
mance of the proposed features for the detection of fricatives
is studied on the TIMIT database. A good performance is ob-
tained for sibilant fricatives.
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