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Abstract
The goal of this paper is to develop state-of-the-art models

for lip reading – visual speech recognition. We develop three ar-
chitectures and compare their accuracy and training times: (i) a
recurrent model using LSTMs; (ii) a fully convolutional model;
and (iii) the recently proposed transformer model. The recurrent
and fully convolutional models are trained with a Connectionist
Temporal Classification loss and use an explicit language model
for decoding, the transformer is a sequence-to-sequence model.
Our best performing model improves the state-of-the-art word
error rate on the challenging BBC-Oxford Lip Reading Sen-
tences 2 (LRS2) benchmark dataset by over 20 percent.

As a further contribution we investigate the fully convolu-
tional model when used for online (real time) lip reading of con-
tinuous speech, and show that it achieves high performance with
low latency.
Index Terms: lip reading, visual speech recognition

1. Introduction
In recent years, there has been a quantum leap in the perfor-
mance of visual speech recognition systems, thanks to the ad-
vances in deep learning techniques [1, 2, 3, 4] and the availabil-
ity of large-scale datasets [5, 6].

In this paper, we propose three new lip reading neural net-
work models based on recently proposed sequence learning
methods that have been used successfully for machine trans-
lation and automatic speech recognition (ASR). There are two
main strands in sequence modelling, namely using an encoder-
decoder architecture with soft-attention [7, 8, 9] (‘sequence to
sequence’), or using CTC [10, 11]. We select two models that
use CTC – a recurrent model with LSTMs, and a fully convolu-
tional model, and from the family of attention-based methods,
we use the recently proposed Transformer [12] which is the cur-
rent state-of-the-art in machine translation.

We make the following four contributions: first, we pro-
pose three complementary new models for lip reading. For two
of these, we adapt architectures developed for other domains,
namely machine translation and ASR, and repurpose them for
lip reading for the first time. Second, we compare the strengths
and weaknesses of these architectures in terms of performance
accuracy, training time, generalization at test time, and ease of
use; third, we achieve a new state-of-the-art on the public BBC-
Oxford Lip Reading Sentences 2 (LRS2) benchmark dataset;
finally, we consider modifications that enable on-line lip read-
ing, so that transcriptions are available immediately, and not
restricted to utterance-in, utterance-out.

On-line lip reading opens up a host of new applications,
such as real-time speech captioning in noisy environments.

1.1. Related works
Research on lip reading has a long history, and has received
an increasing amount of attention in recent years. Large scale

datasets for lip reading are now available such as the Lip Read-
ing in the Wild (LRW) [5, 13] and LRS2 [6].

For character-level recognition of visual sequences, the
prior work can be divided into two strands. The first strand
uses CTC, where the model predicts frame-wise labels and then
looks for the optimal alignment between the frame-wise pre-
dictions and the output sequence. An example based on this
approach is LipNet [14], which uses a spatio-temporal front-
end, with 3D and 2D convolutions for generating the features,
followed by two layers of BLSTM.

The second strand is sequence-to-sequence models that first
read the input sequence before predicting the output sentence.
An example of this is the LSTM based encoder-decoder archi-
tecture with attention of [6], where the model can also com-
bine the audio and visual input streams. This work is extended
in [15], where a wider variety of poses is added to the dataset
and multi-view models are trained.

A deeper architecture than LipNet [14] is used by [16],
who propose a residual network with 3D convolutions to extract
more powerful representations. The network is trained with a
cross-entropy loss to recognise words from the LRW dataset.
Here, the standard ResNet architecture [3] is modified to pro-
cess 3D image sequences by changing the first convolutional
and pooling blocks from 2D to 3D. An extended version of
this architecture is used for jointly modeling audio and video
by [17].

While both encoder-decoder and CTC based approaches
initially relied on recurrent networks, recently there has been
a shift towards purely convolutional models [18]. For machine
translation, [19] replace the encoder and [20] the whole pipeline
with a fully-convolutional model. Encoder-decoder architec-
tures based on dilated convolutions have been also used for
translation [21] and speech synthesis [22], while [23] suggests
using depth-separable convolutions [24] instead. Fully convolu-
tional networks have been recently proposed for ASR with CTC
[25, 26] or a simplified variant [27, 28, 29].

For online sequence-to-sequence prediction, [30] uses at-
tention but constrains it to be monotonic, which allows the
alignment to be computed online, while [31] replaces soft with
hard attention, which is trained with a policy gradient method
and does not require the whole input sequence to be available in
order to start decoding. For training online models with CTC,
[32] use a teacher-student approach, where an offline BLSTM
based model transfers its knowledge to a unidirectional LSTM
student, while [33] use unidirectional RNNs and an expectation-
maximization algorithm dealing with long sequence lengths.
Alternatively, [34] propose a method trained with dynamic pro-
gramming that conditions on the partially observed input and
allows the model to produce output online.
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Figure 1: Lip reading models. The image sequence is first processed by a spatio-temporal ResNet that is common to all models. The visual features
are then processed by one of three architectures. (a) BL: The recurrent model consists of a stack of Bidirectional LSTM layers; (b) FC: The fully
convolutional model is a deep network formed of depth-separable convolutions. (c) TM: a Transformer model. K, V and Q denote the Key, Value and
Query tensors for the multi-head attention.

2. Architectures
Given a silent video of a talking face, our task is to predict the
sentences being spoken. In this section, we propose three deep
neural network models for it. In each case the model consists of
two modules (or sub-networks): a spatio-temporal visual front-
end that inputs a sequence of images of loosely cropped lip re-
gions, and outputs one feature vector per frame; and a sequence
processing module that inputs the sequence of per-frame fea-
ture vectors and outputs a sentence character by character. The
visual front-end is common across the three models, they only
differ in the sequence transcription. We briefly describe each of
these modules in the following, and illustrate them in Figure 1.

2.1. Vision Module (VM)
The spatio-temporal visual front-end is based on [16]. The net-
work applies a spatio-temporal (3D) convolution on the input
image sequence, with a filter width of five frames, followed by
a 2D ResNet that gradually decreases the spatial dimensions
with depth (for full detail please refer to the supplementary ma-
terial). For an input sequence of T ⇥H⇥W frames, the output
is a T ⇥ H

32
⇥ W

32
⇥ 512 tensor (i.e. the temporal resolution is

preserved) that is then average-pooled over the spatial dimen-
sions, yielding a 512-dimensional feature vector for every input
video frame.

2.2. Bidirectional LSTM (BL)
This is the first of the three sequence transcription modules that
we compare. It consists of three stacked bidirectional LSTM
(BLSTM) recurrent layers. The first BLSTM layer ingests the
vision feature vectors, and the final BLSTM layer emits a char-
acter probability for every input frame. The BLSTM have 1024
cells each. The implementation of the BL network is similar to
the one used by LipNet [14]. The network is trained with CTC.
The output alphabet is therefore augmented with the CTC blank
character, and the decoding is performed with a beam search
that incorporates prior information from an external language
model [35, 36].

2.3. Fully Convolutional (FC)
The network consists of a number of temporal convolutional
layers. We use depth-wise separable convolution layers [24],
that consist of a separate convolution along the time dimen-

sion for every channel, followed by a projection along the chan-
nel dimensions (a position-wise convolution with filter width
1). After each convolution we add a shortcut connection, fol-
lowed by Batch Normalization, and ReLU. The FC network is
also trained with a CTC loss, with sequences decoded by using
a beam search that incorporates the external language model
(above). We consider two variants: one with 10 convolutional
layers (FC-10), and a deeper one with 15 convolutional layers
(FC-15).

2.4. Transformer model (TM)

The Transformer [12] model has an encoder-decoder structure
with multi-head attention layers used as building blocks. The
encoder is a stack of self-attention layers, where the input ten-
sor serves as the attention queries, keys and values at the same
time. Every decoder layer attends on the embeddings produced
by the encoder using common soft-attention: the encoder out-
puts are the attention keys and values and the previous decod-
ing layer outputs are the queries. The information about the
sequence order of the encoder and decoder inputs is fed to the
model via fixed positional embeddings in the form of sinusoid
functions. The decoder produces character probabilities which
are directly matched to the ground truth labels and trained with
a cross-entropy loss. We use the base model [12] as is, with 6
encoder and 6 decoder layers, model size 512, 8 attention heads
and dropout with p = 0.1. The TM does not require an explicit
language model for decoding, since it learns an implicit one
during training on the visual sequences. However, integrating
an external language model in the decoding process has been
shown to be beneficial [37].

2.5. External Language Model (LM)

During inference we use a character-level language model,
which is a recurrent network with 4 unidirectional layers of
1024 LSTM cells each. The LM is trained to predict one char-
acter at a time. Decoding is performed with a left-to-right beam
search where the LM log-probabilities are combined with the
model’s outputs via shallow fusion [37]. This is common for all
models, however the beam search is slightly more complicated
in the CTC case. For more details refer to the appendix.
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Net Method # p CER Greedy CER T2 WER Greedy WER T1 WER T2 t/b (s) time
B MV-WAS [15] - - - - 70.4% - - -
BL BLSTM + CTC 67M 40.6% 38.0% 76.5% 62.9% 62.2% 0.76 4.5d
FC-10 FC⇥10 + CTC 24M 37.1% 35.0% 69.1% 58.2% 57.1% 0.23 2.4d
FC-15 FC⇥15 + CTC 35M 35.3% 33.9% 64.8% 56.3% 55.0% 0.34 3.4d
TM Transformer 40M 38.6% 34.0% 58.0% 51.2% 50.0% 0.41 13d

Table 1: Character error rates (CER) and word error rates (WER) on the LRS2 dataset (lower is better). In the case of T1, we use a LM trained on the
corpus explicitly to decode the CTC models, whereas the TM model learns the corpus implicitly during training. For T2, the external LM is explicitly
integrated at inference time for all models. Greedy denotes decoding without beam search. #p denotes the total number of parameters of the model
(excluding the visual front-end), t/b the processing time for a single batch of 100 samples of 60 frames, and time the total time for completing the training
curriculum on a single GPU (d=days). The time to train the visual front-end (2 weeks) is excluded from the statistics.

3. Experiments & Results
3.1. Datasets and evaluation measures
For training and evaluation, we use the Lip Reading in the Wild
(LRW) and the Lip Reading Sentences 2 (LRS2) datasets. LRW
consists of approximately 489K samples, each containing the
utterance of a single word out of a vocabulary of 500. The
videos have a fixed length of 29 frames, the target word occur-
ring in the middle of the clip and surrounded by co-articulation.
All of the videos are either frontal or near-frontal. The LRS2
dataset contains sentences of up to 100 characters from BBC
videos, with a range of viewpoints from frontal to profile. The
dataset is extremely challenging due to the variety in viewpoint,
lighting conditions, genres and the number of speakers. The
training data contains over 2M word instances and a vocabulary
of over 40K.

We also make use of the MV-LRS dataset used in [6], from
which we extract individual words to obtain additional word-
level pre-training data. This auxiliary word-level set will be re-
ferred to as MV-LRS(w). Both MV-LRS and LRS2 have “pre-
train” sets that contain sentence excerpts which may be shorter
than the full sentences included in the train sets and are anno-
tated with the alignment boundaries of every word.

The statistics on these datasets are summarised in Table 3
of the appendix.
Datasets for training external language models. We use two
different text corpora to train the language models. The first,
T1, only contains the transcriptions of the LRS2 pre-train and
main train data (2M words), and therefore the same information
that is provided with teacher forcing via the decoder inputs to
the TM model during training. The second set, T2, of 26M
words, contains the full subtitles of all the videos from which
the LRS2 training set is generated (i.e. T1 is a subset of T2).
Evaluation measures. We evaluate the models on the LRS2
test set that consists of 1,243 utterances. We report Character
Error Rates (CER) and Word Error Rates (WER) on the LRS2
test set, along with the number of parameters, the computation
time for a single mini-batch and the total training time for each
model. The error rates are defined as the normalized edit dis-
tance between the ground truth and predicted sentences.

3.2. Training protocol
The training proceeds in three stages: first, the visual front-end
module is trained; second, visual features are generated for all
the training data using the vision module; third, the sequence
processing module is trained.
Pre-training visual features. For the first stage, we pre-train
the visual front-end on the word-level datasets (LRW and MV-
LRS(w)) following [16], where a 2 layer temporal convolution
network is used to classify every talking head with a word label.
The input video frames are converted to greyscale, scaled and
centrally cropped. We also perform data augmentation in the
form of horizontal flipping, removal of random frames [14, 16],
and random shifts of up to ±5 pixels in the spatial dimension

and of ±2 frames in the temporal dimension.
Curriculum learning. After pre-training the visual module, we
proceed with training the sequence processing networks. We
first pass all the videos through the pre-trained front-end to ob-
tain the visual features. We then train the sequence models di-
rectly on the features, using a strategy similar to [6], that starts
with utterances of 2 words then of 2 and 3 words then {2, 3,
4} etc. Since the position of every word in the input video is
known, we can choose any continuous sentence excerpt con-
tained in the dataset, calculate the corresponding indices in the
visual features sequence and load the features extracted from
the video frames containing the utterance. This approach helps
to accelerate the training procedure. We first train the network
on the MV-LRS and the “pre-train” part of the LRS2 dataset,
and finally fine-tune on the “train” set of LRS2. We deal with
the difference in utterance lengths by zero-padding them to a
maximum sequence length, which we gradually increase along
with the maximum number of words used at every step of the
curriculum.
Training details. The TM is trained using teacher forcing –
we supply the ground truth of the previous decoding step as the
input to the decoder, while during inference we feed back the
decoder prediction. The network is trained with dropout [38]
with probability 0.3 on the inputs and the recurrent units of the
BLSTM layers. The FC uses dropout with probability 0.8 after
each every batch normalisation layer. For the BL architecture
we use SGD with a fixed momentum of 0.9 and learning rate
starting at 10�2 and reducing it every time the error plateaus,
down to 10�4. For the FC and TM we use the ADAM opti-
miser [39] with the default parameters and initial learning rate
10�3, reducing it on plateau down to 10�4. All the models are
implemented in TensorFlow and trained on a single GeForce
GTX 1080 Ti GPU with 11GB memory.

3.3. Results and Model Comparison
The results are summarized in Table 1. The best performing
network is the Transformer, which achieves a WER of 50%
when decoded with a language model trained on T2, an im-
provement of over 20% compared to the previous 70.4% state-
of-the-art [6].
The FC model. The fully convolutional model has a smaller
number of parameters and trains faster than BL and TM,
achieving 55% WER. Comparing to the 10-layer architecture
FC-10, the 5 additional layers contribute a 2% reduction in
WER. We believe this improvement to be mostly due to the
wider total receptive field which gives the model more context
for every prediction. Using depth-separable convolutions dou-
bles the network training speed, without negatively affecting the
accuracy. With the FC architecture, we have fine-grained con-
trol over the amount of future and past context by adjusting the
receptive field. We cannot constrain this in the same way when
using either the BL or TM models, since for both the entire
input sequence needs to be available at inference time. This en-
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frame # Decoded string frame # Decoded string

02 i 02 one
04 he re 07 to
07 on 10 it in
08 a 11 on it
09 we what 12 to on
10 we we 13 to how
11 we have 14 at home
12 we do 26 at home
13 we did 27 at home and
15 we did 28 home
17 we did 29 home to
18 we did it 32 home to
20 we did it 33 home to your
21 we didn’t have 34 home to your
22 we didn’t have 38 home you
23 we did live 40 home you are
24 we didn’t have 41 home you and
25 we did different 45 home to you and
27 we did different 46 home to you and had

gt we did a different gt home to an animal

Table 2: Online decoding examples. Red color denotes the completions
of words by the language model. The last line contains the ground truth
transcriptions of the excerpt.

ables us to perform online decoding with FC, as described in
more detail in the next section.
The BL model. We obtain worse performance with BL com-
pared to FC-10, even though the recurrent model has full con-
text on every decoding timestep compared to the convolutional
that only looks at a limited time-window of the input. We sus-
pect that this is in part due to the CTC loss having a local na-
ture: the output labels are not conditioned on each other and a
monotonic alignment is enforced. Therefore the capacity of the
BLSTM to learn long-term, non-linear dependences cannot be
fully exploited for modelling complex grammar rules.
Language modelling. For all models we get an improvement
of 0.7 - 1.3 % in WER when decoding with T2 compared to T1.
Training time. TM and FC-15 both take approximately the
same amount of time to complete a batch. Every layer of both
models has a O(td2) complexity (for t < d), where d is the
layer’s width (number of channels). TM’s layers have smaller
width (every self-attention block has a base width of 512 chan-
nels and it is followed by two position-wise fully connected lay-
ers with 2048 and 512, compared to 1536 for the FC), but it is
effectively a deeper model, with 3(6 + 6) = 24 layers in to-
tal. However FC-15 takes fewer iterations to train, completing
the full curriculum in 3.5 days, compared to 13 days for TM.
We hypothesize that this is due to the Transformer model be-
ing tasked with learning the self-attention weights, the encoder-
decoder attention, and an implicit language model. In contrast,
the FC’s task of learning the character-emission probabilities
given a fixed context is simpler. The BL naturally takes more
time for processing one batch, since the computations within its
layers have to be run sequentially, in contrast to the other two
models. However it converges in fewer epochs, consequently
even though the time per iteration for BL is almost double that
of FC-10, it takes only one extra day to train in total.
Generalization to longer sequences. The FC model gener-
alises well to longer sequences once it has been trained on sen-
tences that are long enough to cover its full receptive field. We
start observing diminishing returns in terms of accuracy gains
when training on sequences longer than 80 frames. We had sim-
ilar findings with BL. We could not get the TM model to gen-
eralize as well when evaluating on longer sequences than seen
during training and, therefore we continued the curriculum in
order to cover the length up to the longest sample in the valida-
tion set.

4. Online lip reading
In this section we describe how the FC model can be used for
online lip reading with low latency. One advantage of using the
temporal convolutions is that we can control how much future
context we want to allow the model to see. In contrast, when us-
ing bidirectional recurrent networks, or any model with vanilla
attention, the entire input sequence needs to be available at the
start of the inference. Every temporal convolution with filter
width K contributes K�1

2
future frames to the overall receptive

field. The total receptive field of a network with L similar layers
is R = L⇥ K�1

2
⇥ 2 + 1 frames, which allows it to peek up to

r = L⇥K�1
2

frames into the future. In our setting with K = 5,
r is equal to 22 and 32 frames for the 11 and 16 layer models
respectively (here we also take into account the contribution of
the front-end’s 3D convolutions).

Training with CTC is known to result in peaky distributions
[40, 41, 42]. In practice we find that the network emits a char-
acter with high probability when the frames that trigger it are
under the center of its receptive field. In an online setting we
would receive one input video frame at a time. To obtain the
same decodings as when running offline, it is sufficient to ap-
ply the convolutions on the incoming frames with a time lag of r
frames: At the decoding time step t the network’s receptive field
is centred at frame t � r and emits a distribution pctc

t , peeking
r frames into the future. The beam search step can be run itera-
tively on the probabilities pctc

t , scoring them with the language
model and accumulating them into the running hypotheses. The
final prediction is the same as the offline case.

However, since the network is trained on variable length in-
puts, it is able to handle partial sentences. For every decoding
time-step of the loop described above, we can run additional r
beam search steps as if the sentence would end at the current
frame. In this manner, we can make predictions in real time on
every time step with an additional computation overhead pro-
portional to the size of the receptive field. Using convolutions
requires only O(r) new computations for the network forward
pass to obtain the CTC emission probabilities and then an extra
O(rW |A|) to run the Beam Search, where |A| is the alphabet
size and W the beam search width, overall resulting in linear
time complexity, O(TrW |A|). We summarize the procedure
in Algorithm 2 in the appendix.

Finally, on every decoding time step we can predict fur-
ther into the future by querying the language model. We show
examples of online decoding in Table 2, where the endings of
incomplete words of the current beam state are filled in by the
language model.

5. Conclusion
We have proposed and compared three new neural network ar-
chitectures for lip reading, and exceeded the previous state-of-
the-art by a large margin. The networks will be publicly re-
leased. We have also carried out a preliminary investigation of
on-line lip reading and proposed a decoding algorithm for this.
Future work could include varying the activations (e.g. Maxout
or PReLU as in [26]). Another strand to investigate is whether
outputting phonemes and byte-pairs rather than characters, as is
now standard for ASR, would lead to a boost in performance.
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