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Abstract
In this paper, we propose a new technique for the segmen-
tation of the Air-Tissue Boundaries (ATBs) in the vocal tract
from the real-time magnetic resonance imaging (rtMRI) videos
of the upper airway in the midsagittal plane. The proposed
technique uses the approach of semantic segmentation using
the Deep learning architecture called Fully Convolutional Net-
works (FCN). The architecture takes an input image and pro-
duces images of the same size with air and tissue class labels
at each pixel. These output images are post processed us-
ing morphological filling and image smoothing to predict re-
alistic ATBs. The performance of the predicted contours is
evaluated using Dynamic Time Warping (DTW) distance be-
tween the manually annotated ground truth contours and the
predicted contours. Four fold experiments with four subjects
from USC-TIMIT corpus (with ∼2900 training images in ev-
ery fold) demonstrate that the proposed FCN based approach
has 8.87% and 9.65% lesser average error than the baseline
Maeda Grid based scheme, for the lower and upper ATBs re-
spectively. In addition, the proposed FCN based rtMRI seg-
mentation achieves an average pixel classification accuracy of
99.05% across all subjects.
Index Terms: real-time magnetic resonance imaging, air-tissue
boundary segmentation, Fully Convolutional Networks.

1. Introduction
The real-time magnetic resonance imaging (rtMRI) video of the
vocal tract in the midsaggital plane during speech is an im-
portant tool for speech production research. The rtMRI has
an advantage of capturing the complete vocal tract in a non-
invasive manner [1] which makes it more effective than the
existing methods like Electromagnetic articulograph [2], Ultra-
sound [3], X-Ray [4]. The rtMRI video frames provide spatio-
temporal details of the speech articulators that could help in
modeling speech production [5] and several speech related ap-
plications [6], it is very important to have an accurate air-tissue
boundary (ATB) segmentation. For example, to develop a text-
to-speech system, Toutios [7] used the estimated ATB from the
rtMRI videos. Patil et al. [8] used the rtMRI data for comparing
the articulatory control of beatboxers to understand the usage of
articulators in achieving acoustic goals. Studies involving mor-
phological structures of vocal tracts [9] and analysis of vocal
tract movement [10] using rtMRI videos have ATB segmenta-
tion as a pre-processing step. Thus, it is very important to esti-
mate the ATBs in the rtMRI videos before they can be used in
the study of the different articulators and dynamics of the vocal
tract [11–14].

The problems of ATB segmentation of rtMRI images have
been addressed by several works in the past using various ap-
proaches. Several robust ATB estimation techniques have been
proposed using a composite analysis grid line superimposed

on each rtMRI video frame [15–18]. Several other varied ap-
proaches were proposed. For example, Lammert et al. used
a region of interest (ROI) based technique [19] and a data-
driven approach using pixel intensity for the ATB segmentation
problem [20]. A statistical method was presented by Asadia-
badi et al. using the appearance and shape model for the vo-
cal tract [21]. A semantic edge detection based algorithm for
contour prediction was proposed by Somandepalli et al. [22].
Toutios et al. [23] and Sorensen et al. [24] used factor analy-
sis technique to estimate the compact outline of the vocal tract.
Zhang et al. [25] used multi-directional Sobel operators in order
to construct boundary intensity map in the rtMRI video frames.
Techniques such as [15], [18], [20], [21] are advantageous over
the others because of their unsupervised and semi-automatic ap-
proach. However, a more precise and reliable ATBs can be ob-
tained in a supervised learning approach where the model learns
boundary shapes from the limited training images across differ-
ent subjects rather than estimating in an unsupervised manner.

Figure 1: (a) Illustration of the air tissue boundaries
(C1, C2, C3) (b) Closed contour polygon / Mask

In this paper, we consider a supervised approach and pro-
pose a deep learning based semantic segmentation technique for
automatic ATB segmentation both inside and outside the vo-
cal tract from the rtMRI video. The proposed technique uses
the state of the art semantic image segmentation architecture
called Fully Convolutional Network (FCN) [26]. This method
has several advantages over the existing techniques including its
robustness to imaging artifacts and grainy noise, which could be
challenging for naive low-level gradient based approaches. The
areas in the upper airway in the rtMRI video frames have high
pixel intensity regions (corresponding to tissue region) as well
as low pixel intensity regions (corresponding to airway cavity
region in the vocal tract). Hence estimating ATBs from rtMRI
images can be visualized as a problem of finding the boundary
that separates high pixel intensity region from low pixel inten-
sity region. The FCN architecture is trained to learn such inten-
sity difference in the rtMRI frames. We propose several post-
processing steps to apply on the FCN output to predict smooth
and realistic ATBs.

The performance of the proposed technique is evaluated
using Dynamic Time Warping (DTW) distance between the
ground truth contours (manually annotated) and predicted con-
tours. In addition to the DTW distance, the pixel classifica-
tion accuracy is also provided to supplement the semantic seg-
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Figure 2: Illustration of the steps in the proposed FCN based approach

mentation based approach for ATBs segmentation. The DTW
distance is compared with a Maeda grid (MG) based baseline
scheme proposed by Kim et al. [15]. The MG scheme uses a
grid based approach to estimate the ATBs in the rtMRI video
frames. The DTW distance using the FCN based technique is
found to be 8.87% and 9.65% lesser than that using the base-
line MG scheme, for the lower and upper ATBs respectively.
In addition, the FCN based ATB segmentation has an average
pixel classification accuracy of 99.05% across all four subjects
from USC-TIMIT corpus used in this work. This clearly implies
that the proposed method performs better than the baseline MG
scheme. The FCN based technique also estimates the ATBs out-
side the vocal tract unlike the earlier unsupervised approaches,
thereby providing a more detailed and intricate depiction of the
boundaries in the rtMRI frames.

2. Dataset
In this work, we use USC-TIMIT [27] corpus, a rich database of
the rtMRI videos of upper airway in the midsagittal plane. The
database consists of five female and five male subjects speaking
460 sentences from MOCHA-TIMIT [28] database. Each frame
has a spatial resolution of 68× 68 (2.9mm× 2.9mm) and the
video was recorded at 23.18 frames/sec. For this work we chose
to work on 16 rtMRI videos (one for each sentence) from each
of two female (F1, F2) and two male (M1, M2) subjects. The
selected 16 videos have 1462, 1270, 1642, 1399 image frames
from subjects F1, F2, M1, M2 respectively.
A MATLAB-GUI was used for manual annotation of three ma-
jor contours representing the complete ATB in rtMRI images
as shown in Figure 1 [29]. Along with the contours, upper lip
(UL), lower lip (LL), tongue base (AVR), velum tip (VEL) and
glottis begin (GLTB) were also marked for each rt-MRI frame
using the GUI. As shown in Figure 1, the contour-1 (C1) is
a closed contour starting from upper lip (UL); it runs through
the hard palate and joins the velum (VEL) and goes around the
fixed nasal tract. Contour-2 (C2) is a single closed contour
which covers the jawline, lower lip (LL), tongue blade and ex-
tends below the epiglottis. Contour (C3) marks the pharyngeal
wall. In order to train the proposed FCN we make sure that all
three contours are closed.
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Figure 3: FCN architecture used in this work

3. Proposed FCN based segmentation
The FCN based semantic segmentation approach for ATB seg-
mentation in the rtMRI video frames is explained using a block
diagram shown in Figure 2. The rtMRI images are passed
through FCN based semantic segmentation step for each of the
three contours separately. For every contour, this step generates
a binary image where one class corresponds to pixels within the
contour and the second class for outside the contour. These
three binary images in each video frame are passed through
post processing stages followed by contour prediction step. The
post processing stages include morphological filling and mov-
ing average filtering. Three complete predicted contours in ev-
ery rtMRI video frame are pruned to obtain the ATB within the
vocal tract. The detailed description for each block is given be-
low.

3.1. FCN based Image Segmentation
The understanding of an image at pixel level by assigning a
class label to each pixel is called as semantic segmentation. For
example, labeling the pixels of an image based on the object
class at that particular pixel location. ATB segmentation of an
rtMRI video frame is equivalent to labeling each pixel as be-
longing to tissue class or air-cavity class. Hence, we can use
semantic segmentation to understand the rtMRI image at the
pixel level. In this work, we incorporate FCN [26] based se-
mantic segmentation over U-Net [30] and SegNet [31] due to
their state-of-the-art performance and the memory versus accu-
racy trade-off involved in achieving good segmentation perfor-
mance in semantic segmentation. The idea behind using FCN
is to preserve the spatial information, that is the network takes
input of size 68 × 68 and produces output image of same size.
The state of the art performance was achieved for the seman-
tic segmentation task by using VGG-16 architecture. Hence we
incorporate a similar architecture for our segmentation task as
shown in Figure 3. In our experiment, we have only two class
labels: 1) region inside of the contour polygon is labeled as
class-1 and 2) region outside of the contour polygon is labeled
as class-0. We train three different FCNs as shown in Figure 2,
for each contour polygon as defined in section-2 and as depicted
using three masks Mask1, Mask2 and Mask3 in Figure 1(b).
Each FCN outputs a binary mask image of 1s at all the pixel
locations inside the contour polygon and 0s elsewhere.

3.2. Image Enhancement

Image enhancement consists of post processing steps on the bi-
nary mask image obtained from the FCN based image segmen-
tation block. Image enhancement involves two steps: 1) Image
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filling - to obtain uniform class value inside the contour polygon
2) Smoothing - to remove sharp edges in the binary mask image
obtained from FCN. In this work, image filling comprises two
functions: a) morphological dilation/filling [32] and b) Logical
OR between the FCN output and the morphologically dilated
image as shown in Fig 2. The morphological filling operation
requires a structural element. In this work, we selected a disk
shaped structural element of radius 5-pixels, decided based on
its performance on the development set. This dilation opera-
tion at a pixel location is controlled by the surrounding pixels
(in the shape of a disk). Hence, this operation fills the holes
inside contour polygon but it also dilates the boundary regions,
ultimately corrupting the shape of the binary mask. In order to
preserve the shape, the Logical OR operation, after morphologi-
cal filling, is done. Figure 4(b), 4(e) show the output for Mask1
and Mask2 respectively after image filling (step-1). Following

(a) (b) (c)(a)

(d) (e) (f)

Step 1: Image Filling Step 2: Image SmoothingBinary Mask Image

Figure 4: (a), (b), (c): Illustration of the steps in Image en-
hancement of Mask1 and (d), (e), (f): Illustration of the steps
in Image enhancement of Mask2

image filling, in order to obtain smooth and realistic contours,
we aim to remove sharp edges in the morphologically filled bi-
nary mask image. Hence the final post processing step involves
image smoothing which is done using moving average filter of
size 2× 2. Figure 4(c), 4(f) show the output of moving average
filtering on Mask1 and Mask2 respectively.

3.3. Contour Prediction

The contour prediction for all three post-processed FCN out-
puts works based on the principle of edge detection. In this
work, we use the canny edge detection algorithm. This section
concentrates on predicting a contour that connects the bound-
ary edge points to form a closed contour. In order to predict a
closed contour that fits all the edge points with a minimum area
enclosed we use concave hull algorithm for 2-dimension [33],
which works based on N nearest neighbors. The threshold N
in the concave hull algorithm describes the smoothness level of
the computed hull on the edge points. In this work, we fix the
parameter N to be 3, decided based on its performance on the
development set. Figure 5(a) illustrates the full contour pre-
diction on Mask1, Mask3 and Figure 5(c) illustrates the full
contour prediction on Mask2. The predicted contours corre-
sponding to three masks are denoted by Ĉ1, Ĉ2, Ĉ3.

Figure 5: (a) Illustration of the contour prediction for Mask1,
Mask3 (b) Illustration of the contour pruning for upper ATB
(c) Illustration of the contour prediction for Mask2 (d) Illus-
tration of the contour pruning for lower ATB

3.4. Contour Pruning

The predicted ATBs cover regions both inside and outside the
vocal tract as illustrated in section 3.3. In order to obtain the
ATBs within the vocal tract, we follow different procedures for
upper (Ĉ1) and lower (Ĉ2) ATBs. For pruning the upper con-
tour (Ĉ1), at first, the VEL point is spotted using the inflection
point in contour Ĉ1. Then, Ĉ1 is segmented from UL point till
the VEL tip to form Ĉ11. Likewise, Ĉ3 is also segmented from
point closest to VEL till GLTB to form Ĉ12. Eventually, Ĉ11

and Ĉ12 are stitched together to form upper ATB Ĉprun
1 . Figure

5(b) shows the Ĉprun
1 obtained from Ĉ1 and Ĉ3.

Similarly, Ĉ2 is pruned from LL to GLTB. However, the
portion of contour near the tongue base (due to the presence
of lower teeth) is not a part of the vocal tract. In order to ob-
tain a smooth contour near the tongue base, contour smooth-
ing technique is followed. Firstly, we segment the Ĉ2 starting
from the point Ĉstart

2 with lower row index (typically close to
LL) to point Ĉend

2 which is identified as the next point with the
similar row index. Lets denote this segment (around the AVR
point) of length P as Cseg = {(xi, yi), 1 ≤ i ≤ P}. This
Cseg is replaced with Csm = {(xi, y

sm
i ), 1 ≤ i ≤ P}, where

ysm
i , b0+b1xi+b2(xi)

2, ensuring a smooth contour near the
AVR. The coefficients of the polynomial are obtained by min-
imizing the MSE between the data points and the polynomial
function. After replacing the portion of Cseg in Ĉ2 with Csm,
we obtain the lower ATB Ĉprun

2 . Figure 5(d) shows Ĉprun
2 af-

ter pruning and smoothing Ĉ2.

4. Experiments and Results
4.1. Experimental Setup

In this work, for the estimation of ATBs we consider 16 videos
of rtMRI data from 4-subjects (F1, F2, M1, M2). The FCN
model was trained and evaluated using 4-fold cross validation
by choosing the videos in a round robin fashion. In each fold,
the test set consists of four videos from each of the four sub-
jects, i.e., a total of 16 videos. The FCN model is trained with
eight videos from each subject resulting a total of 32 videos. Re-
maining sixteen videos, four from each subject, are used as the
development set. As described in section 3.1, each FCN model
is trained for a particular contour. Each fold on an average con-
sists of∼2900 training images,∼1443 images in both develop-
ment and test sets. The FCN model is trained for a maximum
of 120 epochs with early stopping condition imposed based on
the validation loss. In this work, we use the development set
for selecting 1) the structural element and its size for image fill-
ing, 2) size of moving average filter, 3) parameter N in contour
prediction (sec-3.3).

4.2. Evaluation metric

For evaluation, we use two metrics 1) DTW Distance and 2)
pixel accuracy. DTW distance measures the closeness of the
estimated contour to the ground truth contour [34]. In addi-
tion to DTW distance, we also provide the pixel accuracy score,
similar to evaluating performance of a semantic segmentation
method [26], [30].
1) DTW distance: Lets denote the ground truth contour Cg of
length Mg as Cg(i) = {(xg

i , y
g
i )|1 ≤ i ≤ Mg} and predicted

contour Cp of length Mp as Cp(i) = {(xp
i , y

p
i )|1 ≤ i ≤ Mp}.
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The DTW distance between Cg and CP is defined as:

DTW (Cg, Cp) = argmin
1≤o

′
g≤Mg

1≤o
′
p≤Mp

1

L

L∑

l=1

||Cg(o
′
g(l))−Cp(o

′
p(l))||2

(1)
The DTW scores have a unit of pixel. Smaller value of
DTW(Cg, Cp) indicates more similarity between Cg and Cp,
which means that they are located closely. The DTW scores are
reported separately for 1) The pruned contours Ĉ1

prun
, Ĉ2

prun

where MG based approach [15] is used as a baseline 2) full con-
tours (Ĉ1, Ĉ2, Ĉ3). In order to carry out the evaluation similar
to the baseline MG, we prune the ground truth following the
steps outlined in section 3.4. The pruned ground truth contours
are denoted as (Cprun

1 , Cprun
2 ).

2) Pixel accuracy: Let pij be the number of pixel of class i
predicted to class j and Ti is total number of pixels in class i,
i.e., Ti =

∑
j pij , where i, j ∈ {0, 1}. In order to show the

performance of the FCN model used for the semantic segmen-
tation we provide the Pixel accuracy corresponding to each
mask which is defined as

∑
i pii∑
i Ti

.

Baseline MG Proposed FCN

(Lower ATB) (Lower ATB) (Upper ATB) (Upper ATB)

Figure 6: Illustration of the ATBs within the vocal tract using
using MG and FCN schemes

4.3. Results and Discussion

The mean ± standard deviation of DTW(Cprun
2 ,Ĉ2

prun
) and

DTW(Cprun
1 ,Ĉ1

prun
) are shown in Table 1 for the baseline

method MG and the proposed FCN based method. The DTW
distance, when averaged across subjects is found to be 8.87%
lesser for the lower ATBs and 9.65% lesser for the upper ATBs,
when the FCN method is compared to the baseline scheme.

Lower ATB (Ĉprun
2 ) Upper ATB (Ĉprun

1 )
SUB MG FCN MG FCN

F1 1.21±0.21 1.00±0.25 1.02±0.19 0.91±0.21
F2 1.28±0.27 1.13±0.31 1.24±0.29 1.08±0.19
M1 1.26±0.60 1.17±0.25 1.10±0.20 1.02±0.20
M2 1.35±0.30 1.21±0.23 1.19±0.24 1.09±0.21

Average 1.24±0.35 1.13±0.26 1.14±0.23 1.03±0.20
Table 1: DTW distance of the predicted ATBs within the vocal
tract.

Figure 6(a) and Figure 6(c) illustrate example where the
proposed FCN scheme performs better compared to the MG
method. The improved performance compared to the base-
line MG can be associated with the following reasons: 1) spa-
tial characteristics captured in the semantic segmentation ap-
proach 2) individual-FCN model for each contour and 3) image
enhancement techniques, applied as the post processing step.
These altogether prevent the proposed method from estimating
jagged contours. The Figure 6(b) and Figure 6(d) illustrate ex-
amples where the predicted contours using FCN are not as pre-
cise as the ones obtained using MG scheme. The poor perfor-
mance of FCN based method could be due to the low resolution
of the image. Hence the model can not differentiate the contact

region of velum and tongue dorsal well in the case of Figure
6(b). Similarly, in Figure 6(d) the model can not precisely lo-
cate the velum and pharyngeal wall.

Figure 7: Illustration of the complete ATBs predicted using the
FCN based method for four subjects.

SUB C1 C2 C3

F1 0.89±0.11 1.05±0.19 0.83±0.11
F2 1.02±0.17 1.12±0.24 0.80±0.10
M1 1.03±0.21 1.37±0.35 0.80±0.09
M2 0.98±0.09 1.01±0.17 0.85±0.10

Table 2: DTW distance of the full contours

In addition to the pruned ATBs, we also present the com-
plete predicted contours for each subject (Ĉ1, Ĉ2, Ĉ3) as shown
in Figure 7. We supplement these examples with mean ±
standard deviation DTW distance between the predicted and
the ground truth complete contours in Table 2 and mean
Pixel accuracy corresponding to each mask in Table 3.

SUB Mask1 Mask2 Mask3
F1 99.39 98.34 99.73
F2 99.20 98.14 99.75
M1 99.28 97.97 99.75
M2 99.32 98.09 99.70

Table 3: Average Pixel accuracy (in %) for different mask

On an average ∼ 1% pixels are being misclassified. This
1% accounts for 49 pixels out of the total 4624 (68 × 68) pix-
els in the image. These misclassified pixels predominantly lie
in the boundary region where the model cannot differentiate the
contact between the upper and lower ATB. This is mainly be-
cause of the low resolution of the image. To an extent, the image
enhancement step helps to correct the misclassified pixels, but
this step may also lead to a shift in the boundaries‘ position,
ultimately predicting an un-reliable contour. Hence, the error
corresponding to the proposed FCN based method (Table 1 and
Table 2) can be strongly associated with pixel accuracy of the
FCN model. Even though the proposed technique has minor
disadvantages, the results clearly show that the proposed FCN
based method predicts a reliable contour both inside and outside
the vocal tract.

5. Conclusions
In this paper, we proposed a Deep learning based semantic seg-
mentation approach for prediction of the Air tissue boundaries
in the midsagittal rtMRI video frames. The proposed FCN
model learns the shapes across all the subjects from the train-
ing data. The robust performance of the proposed method is
associated to the model trained for individual contour predic-
tion which avoids uncertainty in semantic segmentation/contour
prediction. Future works include developing completely auto-
mated boundary detection schemes by modifying the FCN ar-
chitecture.
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