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Abstract

In contrast to 1-D short-time analysis of speech, 2-D model-
ing of spectrograms provides a characterization of speech at-
tributes directly in the joint time-frequency plane. Building on
existing 2-D models to analyze a spectrogram patch, we pro-
pose a multicomponent 2-D AM-FM representation for spec-
trogram decomposition. The components of the proposed rep-
resentation comprise a DC, a fundamental frequency carrier and
its harmonics, and a spectrotemporal envelope, all in 2-D. The
number of harmonics required is patch-dependent. The estima-
tion of the AM and FM is done using the Riesz transform, and
the component weights are estimated using a least-squares ap-
proach. The proposed representation provides an improvement
over existing state-of-the-art approaches, for both male and fe-
male speakers. This is quantified using reconstruction SNR and
perceptual evaluation of speech quality (PESQ) metric. Further,
we perform an overlap-add on the DC component, pooling all
the patches and obtain a time-frequency (t-f) aperiodicity map
for the speech signal. We verify its effectiveness in improving
speech synthesis quality by using it in an existing state-of-the-
art vocoder.
Index Terms: multicomponent 2-D AM-FM modeling, aperi-
odicity parameter, Riesz transform.

1. Introduction
Speech signals feature a temporally evolving spectral content,
evident in spectrogram visualizations [1]. The widely used ap-
proaches in speech processing assume quasi-stationarity and ex-
tract spectral features on successive short-time segments, usu-
ally 10 or 25 ms long [2]. These features and their correla-
tions over a temporal context, usually 1 s, are found to cap-
ture speaker and phoneme attributes and serve as front-end fea-
tures in applications such as speech activity detection, speaker
identification [3], and speech recognition [4]. However, over
the past decade, analysis of the temporally evolving spectral
content using joint time-frequency (t-f) analysis of the spectro-
gram has gained interest [5–8]. Mathematically, this provides a
means to tackle the 1-D spectral nonstationarity in speech using
2-D stationary spectral analysis. Interestingly, auditory neuro-
science findings suggest that the neurons in the auditory cortex
are tuned to distinct spectrotemporal patterns in speech spec-
trograms [9–11]. Arguably, 2-D modeling of the spectrogram
can provide a useful framework for analysis of spectrotemporal
features associated with perceived speech attributes.

Consider the narrowband speech spectrogram shown in Fig-
ure 1. In this paper, by default, the term spectrogram refers to
the narrowband flavor. From psychoacoustics [12], it is well
established that the gliding spectrotemporal striations are asso-
ciated with the time-varying pitch in natural speech [1]. The rel-
ative strengths of these striations, seen as color contrast, encode
the uttered phonemes. The key idea in spectrotemporal anal-
ysis is to model these patterns with a 2-D signal model. This
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Figure 1: A narrowband spectrogram of a male speech utter-
ance. The highlighted patch is modeled using the proposed
model. The computed parameters are α0 = 0.83, α1 =
1, α2 = 0.26, and α3 = 0.01. The estimation procedure will
be described in Sec. 2.2.

is pursued by analyzing the spectrogram in a patch-wise fash-
ion. Wang and Quatieri [6] modeled each patch as an element-
wise product of a 2-D spectral envelope and a 2-D sinusoidal-
series carrier. Ezzat et al. [5] proposed a 2-D AM-FM model
for each patch using a 2-D Gabor filter-bank analysis approach.
It was shown that the 2-D AM encodes the phonetic attributes
and the 2-D carrier encodes the speaker attributes. Building on
these models, Aragonda and Seelamantula [8] proposed a 2-D
AM-FM model, which generalized the 2-D stationary FM as-
sumption in [6] to spatially varying FM. This requires the de-
sign of an accurate 2-D AM and FM estimation technique, and
the complex Riesz transform [13] based demodulation approach
was used for achieving this goal. The generalized model in [8]
gives a 2 to 4 dB benefit in reconstruction SNR in comparison
with [6], and has also been used for pitch estimation [14] and
periodic/aperiodic separation of speech [15].

In this paper, we further analyze the 2-D AM-FM model
in [8] and make two contributions. First, we generalize the
model to contain multiple 2-D AM-FM sinusoids. An illus-
tration of the proposed modeling is shown in Figure 1. The
motivation lies in the observation that a 2-D patch containing
periodic striations will be modeled more accurately by using a
weighted sum of harmonically related 2-D sinusoidal carriers,
analogous to 1-D Fourier series modeling of periodic signals.
Also, spectrogram patches that do not predominantly exhibit
any spectrotemporal structure can be modeled more accurately
by including more components in the model—this generaliza-
tion improves the modeling accuracy. Second, we analyze the
patch-wise DC components (α0 in Figure 1) obtained from the
proposed model. Existing findings [5, 6, 8] have shown the role
of the 2-D envelope and the 2-D carrier in characterizing the
vocal tract and the vocal-fold vibrations, respectively. Our find-
ings suggest that along with the AM and carrier components,
the DC component is also informative in analyzing the speech
attributes. An overlap-add on the DC components in patch-
wise fashion provides a 2-D visualization of the aperiodicity
structure in the joint t-f plane. We evaluate the effectiveness of
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Figure 2: (a) A spectrogram patch, and (b) its 2-D Fourier
transform magnitude spectrum. For better visualization of the
peaks, the DC component energy has been removed by applying
a high pass filter on the magnitude spectrum.

the obtained t-f aperiodicity map by providing it as input to the
STRAIGHT vocoder [16].

This paper is organized as follows. In Section 2, we present
the proposed signal model and the technique for estimation of
its components. Following this, in Section 3, we apply the sig-
nal model to natural speech utterances, and make performance
comparisons with the model proposed in [8]. In Section 4, we
present analysis of the DC component of the model and derive
a t-f aperiodicity map, which is then evaluated for speech syn-
thesis. We conclude in Section 5, highlighting the key contribu-
tions and directions for future work.

2. The Proposed Signal Model
A monocomponent 2-D AM-FM model for a windowed spec-
trogram patch SW (ω) is given by [8],

SW (ω) ≈ V (ω)

(
α0 + cos Φ(ω)

)
, (1)

where ω = (t, ω) with t and ω denoting continuous time and
frequency variables, respectively. The frequency modulation
(FM) and amplitude modulation (AM) of a 2-D cosine with
spatial frequency Ω0(ω) and local orientation β(ω) are repre-
sented by Φ(ω) = Ω0(ω)(t cosβ(ω)+ω sinβ(ω)) and V (ω),
respectively. As an example, the 2-D Fourier transform of a
patch SW (ω) drawn from the voiced region in a spectrogram is
shown in Figure 2. The 2-D cosine in (1) models the first peak
in the 2-D Fourier transform. However, as can be seen, there
are multiple peaks, and including them will allow for a more
accurate modeling of SW (ω). Towards this, we generalize the
monocomponent model to a multicomponent one as follows:

SW (ω) ≈ V (ω)

(
α0 +

K∑

k=1

αk cos kΦ(ω)

)

= α0V (ω)︸ ︷︷ ︸
low-pass component

+ α1V (ω) cos Φ(ω)︸ ︷︷ ︸
fundamental band-pass component

+ α2V (ω) cos 2Φ(ω) + . . .︸ ︷︷ ︸
higher-order band-pass components

,

(2)

where K is the model order, α0 ∈ R is referred to as the DC
component and {αk}Kk=1 ∈ R act as weights on the carrier
and its harmonics. In line with the model in (1), we assume
α1 = 1 and let θ = [α0 1 α2 . . . αK ]T. We refer to V (ω) and
cos Φ(ω) as the AM and FM components, respectively. Given
a windowed spectrogram patch SW (ω), the goal is to estimate
V (ω),Φ(ω), and θ.
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Figure 3: A block diagram showing the Riesz transform ap-
proach for estimating the AM and FM components.

2.1. Estimation of AM and FM Components

The AM and FM components for a spectrogram patch are esti-
mated using the approach illustrated in Figure 3. The technique
is a 2-D extension of the 1-D Hilbert transform [17] and was
proposed in [8]. The spectrogram patch is first subjected to a 2-
D band-pass filter designed to pick the fundamental band-pass
component V (ω) cos Φ(ω) denoted by SW,b(ω). The vortex
operator V [13] is applied to SW,b(ω) to obtain its quadrature
component [18,19]. Following this, a 2-D complex analytic sig-
nal SW,a(ω) is constructed using the band-pass component and
its quadrature counterpart. The modulus and angle operations
on the 2-D analytic signal yield the estimates of the AM V (ω)
and FM Φ(ω).

2.2. Estimation of Parameter θ

After obtaining estimates of V (ω) and Φ(ω) for a patch, the pa-
rameter set θ is estimated by using the least-squares approach.
Let m = (l, k) denote the discretization of ω = (t, ω). For a
given spectrogram patch SW (m), we vectorize it into a column
vector denoted by s. Similarly the column vectors correspond-
ing to V (m) and Φ(m) are denoted by v and φ, respectively.
We consider the problem

arg min
θ

∥∥∥∥s− v �
(
α0 +

K∑

j=1

αj cos jφ

)∥∥∥∥
2

, (3)

where � denotes element-wise product operation. Taking
derivative of the cost function with respect to θ in (3) and equat-
ing it to zero gives us a set of K linear equations,
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︸ ︷︷ ︸
bK×1

, (4)

where vj = v � cos jφ for j = 0, 1, 2, . . .K. The closed-
form least-squares solution is θ = A†b where A† denotes the
pseudo-inverse of A. An illustration of the obtained AM, FM
and θ is shown in Figure 1.

2.3. Choice of the Model Order K

The spectrogram patches corresponding to voiced regions show
localized multiple peaks in the 2-D Fourier transform (for in-
stance, see Figure 2). A schematic of the first peak location is
shown in Figure 4. The distance of first peak from the origin,
that is d0, is dependent on the fundamental frequency F0 in the
patch. This is quantified by

d0 =
N2

N1

fs
F0 sin γ0

, (5)
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Figure 4: A schematic for the 2-D Fourier transform of a voiced
signal patch.
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Figure 5: (a) A spectrogram patch of a male speaker (avg. F0
= 130 Hz), (b) a spectrogram patch of a female speaker (avg.
F0 = 190 Hz), and (c) SRNR (dB) vs. model order. The spec-
trogram is computed using a 40 ms Blackman window and 1 ms
frame update interval.

where fs, N1, and N2 denote the sampling frequency, the num-
ber of DFT points used to compute the spectrogram and the 2-D
Fourier transform, respectively. The model order K is adapted
such that Kd0 sin γ0 does not imply choosing a frequency bin
outside N2/2. Correspondingly,

K =

⌊
N2/2

d0 sin γ0

⌋
=

⌊
F0N1

2fs

⌋
, (6)

which shows that for fixed N1 and fs, the model order K di-
rectly depends on F0, and hence, it is inherently adaptive for
each patch according to F0. For instance, female speakers have
a higher F0 compared to male speakers and hence K would be
correspondingly higher.

The 2-D Fourier transform of an unvoiced patch does not
show harmonically separated peaks. Assuming d0 corresponds
to the highest peak location in an unvoiced patch, we use the
same selection criterion for the model order as given in (6).

2.3.1. Accuracy Versus Model Order

We analyze the significance of the model order by evaluat-
ing the patch reconstruction signal-to-reconstruction noise ratio
(SRNR) for different values of K. This is expressed as

SRNR = 10 log10

‖SW (ω)‖2
‖SW (ω)− ŜW (ω)‖2

dB,

where ŜW (ω) denotes the reconstructed patch using the pro-
posed signal model. Figure 5 depicts the evaluation for patches
corresponding to a male and a female speaker. It can be seen
that increasing the model order from K = 1 to K = 2 im-
proves the SRNR by about 45 dB for a male speaker. For a
female speaker, the SRNR improves by about 42 dB when the
model order is increased from K = 1 to K = 3. Also, we see
a saturation in SRNR beyond a certain value of K. Because fe-
male speakers have a higher F0, the saturation occurs at a higher
value of K (cf. (6)) than for a male speaker.

3. Evaluation on Speech Data
To evaluate the proposed approach for natural continuous
speech, we used the Starkey speech database [20]. This
database includes a set of 8 male and 8 female American speak-
ers, reading the standard rainbow passage [21]. The 16 speakers
additionally provide speaking style variability in terms of pitch,
speaking rate, and perceived voice quality. From the continu-
ous speech recordings in the dataset, we selected a total of 80
utterances, that is, 5 utterances each from the 16 speakers. Each
utterance is about 4 s long. The sound files were downsampled
to 8 kHz.

In order to get a narrowband spectrogram for both male
and female speakers, we use a 40 ms long Blackman window
with 1 ms frame update interval for the computation of short-
time Fourier transform (STFT). The spectrogram is segmented
into overlapping patches of fixed size (100 ms × 600 Hz).
These patches are subjected to the multicomponent modeling
approach introduced in Sec. 2. The reconstructed patches are
subjected to a 2-D overlap-add in the least-squares sense (OLA-
LSE) [22]. The resulting spectrogram is inverted with the
original STFT phase to obtain the reconstructed speech signal.
Three objective measures namely global SNR (GSNR), aver-
age segmental SNR (SSNR), and PESQ, are used for perfor-
mance evaluation. These measures are computed between the
input signal and the reconstructed speech signal. The GSNR
quantifies the reconstruction error in the time domain, that is,

GSNR=20 log10

( ‖x‖
‖x− x̂‖

)
dB, where x and x̂ are the input

and the reconstructed signals, respectively. The average seg-
mental SNR is obtained by averaging the frame-wise SNR over
frames of duration 20 ms. The PESQ (perceptual evaluation
of speech quality) metric is recommended by the ITU-T P.862
standard as an objective method to test the speech quality. It lies
in the range−0.5 to 4.5 with a higher value indicating a quality
close to the reference input signal.

Figure 6 shows the objective scores for the files from the
dataset obtained using the proposed model (adaptive K) and
the previously proposed 2-D AM-FM model [8], which uses
K = 1. With respect to all three objective measures, we ob-
serve that adapting K increases the model accuracy. The gain
is significantly more for female speakers, about 3 dB in aver-
age GSNR and SSNR. The improvement is justified as follows.
Depending on the number of harmonic peaks found within the

2-D Fourier transform of a patch, the model order varies from
one patch to another. In order to get an idea of the variation,
we analyze the model order required by different patches ob-
tained while analyzing the above dataset. An average normal-
ized count of the model order after pooling all patches is shown
in Figure 7. The spectrogram patches corresponding to female
speakers feature a higher occurrence of model orders 3, 4 and
5, relative to the patches from male speakers. This is attributed
to the higher F0 for female speakers. This also implies that it is
advantageous to adapt the model order, as recommended in the
proposed approach.

4. DC Component Analysis
The DC component α0 in the signal model is constant within a
patch. Pooling such matrices corresponding to all the patches in
the spectrogram and employing OLA-LSE, we obtain a t-f map
A0(ω). We normalize it to lie between 0 and 1 as follows:

A0(ω) =
A0(ω)−min{A0(ω)}

max{A0(ω)} −min{A0(ω)} . (7)

738



K=1 ADAPTIVE K
7

8

9

10

11

12

13

14

G
S

N
R

 (
d

B
)

(a)
K=1 ADAPTIVE K

8

9

10

11

12

13

14

S
S

N
R

 (
d

B
)

(b)
K=1 ADAPTIVE K

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

P
E

S
Q

(c)

K=1 ADAPTIVE K
7

8

9

10

11

12

13

14

G
S

N
R

 (
d

B
)

(d)
K=1 ADAPTIVE K

8

9

10

11

12

13

14

S
S

N
R

 (
d

B
)

(e)
K=1 ADAPTIVE K

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

P
E

S
Q

(f)

Figure 6: Evaluation on continuous speech taken from the
Starkey speech database. The first row shows the scores for
male speakers and the second one for female speakers. The
solid circle represents the mean value and the vertical bars in-
dicate 0.5 standard deviation on either side of the mean.
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of patches for a given speech file and averaged with respect to
the total number of files in the database.

Figure 8 displays the t-f map of A0(ω) along with the spectro-
gram. It can be observed thatA0(ω) captures the residual spec-
trum left after fitting the harmonics to the spectrogram. Also, it
assumes relatively small values for spectrotemporal regions that
have prominent harmonic striations and high values otherwise.
Owing to this property of A0(ω), we propose A0(ω) as a t-f
aperiodicity map. We evaluate its effectiveness by deploying it
in a speech synthesis task.

4.1. Using A0(ω) as the Aperiodicity Map in a Vocoder

The band-wise source aperiodicity parameters (AP) have been
used for accurate modeling of the noise in the t-f domain re-
quired to synthesize natural sounding speech [23, 24]. Par-
ticularly, the aperiodicity parameters have been successfully
used in vocoder based speech synthesis applications. We use
STRAIGHT [16, 25], which is the most widely used vocoder.
Given an input speech signal, the STRAIGHT vocoder takes
an analysis-by-synthesis approach. It estimates the spectral en-
velope, fundamental frequency, and AP from the speech signal
and uses them to synthesize the speech signal. Focusing on
AP, we analyze the following three cases for speech synthesis:
(1) discard the aperiodicity parameter (AP=0); (2) use AP es-
timated by STRAIGHT; and (3) set AP equal to the proposed
aperiodicity map A0(ω).
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Figure 8: (a) Spectrogram for the sentence, “And you always
wanted to see it in the superlative degree,” uttered by a female
speaker, and (b) the estimated aperiodicity map A0(ω).
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Figure 9: PESQ scores for synthesized speech signals without
aperiodicity parameters (AP=0), STRAIGHT AP, and proposed
AP. The solid circles represent the average scores.

We use the Starkey database and synthesize speech signals
using the STRAIGHT analysis-by-synthesis approach. We test
the quality of synthesized speech signals by computing PESQ
scores (cf. Figure 9). Without AP (Case 1), the average PESQ
scores (represented by solid circles) are below 2.5 for both male
and female speakers – this indicates a poor synthesis quality, far
from natural speech. With STRAIGHT AP (Case 2), the PESQ
improves significantly and is about 3.5 for both male and female
speakers, highlighting the importance of AP in speech synthe-
sis. The PESQ of Case 3 is comparable to that of Case 2. This
shows the effectiveness of A0(ω) in capturing the aperiodicity
attribute. Some synthesized speech samples are available at [26]
for listening.

5. Conclusions
We proposed a multicomponent 2-D AM-FM model for spec-
trotemporal analysis of the speech signal. The number of com-
ponents used is adapted patch-wise. The proposed model builds
on an existing state-of-the-art monocomponent 2-D AM-FM
model and offers a significant improvement in terms of mod-
eling accuracy for both male and female speakers by making
the model-order adaptive. Further, we analyzed the speech at-
tribute captured by the DC component of the signal model and
showed that it can be used to obtain a meaningful t-f represen-
tation of the aperiodicity. An evaluation carried out using the
STRAIGHT vocoder highlighted the effectiveness of the new
aperiodicity map.

It would be interesting to quantify the spectrotemporal
speech attributes captured by the higher-order model coeffi-
cients. It would also be worthwhile analyzing the proposed sig-
nal model for noisy and reverberant speech. We hypothesize
that the model parameters may aid in quantifying the noise and
degree of reverberation in a speech signal.
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