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Abstract

Continuous emotion recognition (CER) is the task of determin-
ing the emotional content of speech from audio or multimedia
recordings. Training targets for machine learning must be gen-
erated by human annotation, generally as a time series of emo-
tional parameter values. In typical contemporary CER systems
and challenges, the mean over a pool of annotators is taken to
represent this ground truth, but is this an appropriate model for
the emotional content of speech? Using the RECOLA dataset,
the primary contribution of this research is to show that a cor-
relation exists between the time-varying disagreement from in-
dependent groups of annotators. Because the groups are com-
pletely isolated except via the speech signal, this agreement-
about-disagreement demonstrates that there is a component of
annotator disagreement which arises systematically from the
signal itself, which qualitatively implies that the perceived emo-
tional content of speech can exhibit some degree of inherent
ambiguity. Additionally, we show that these human annota-
tions exhibit a degree of temporal smoothness. Neither of these
characteristics is represented by the standard series-of-means
ground-truth model, so we propose two alternative ground-truth
models: a mean-variance model that incorporates ambiguity,
and a more general Gaussian process model that incorporates
ambiguity and temporal smoothness in a well-defined probabil-
ity distribution.

1. Background
1.1. Continuous emotion recognition

Continuous emotion recognition from speech is the task of tak-
ing an audio or multimedia recording of a human speaking, and,
using the content of that recording, assigning numerical emo-
tional parameter values to each temporal frame, in order to rep-
resent the emotional content of the speech signal as it varies
through time [1]. In this way it is distinct from label-based
schemes, which attempt to assign emotional labels from a fi-
nite set rather than real-valued parameters to describe affective
content [2, 3], and from whole-utterance emotion recognition,
which attempts to assign a single emotional description to the
entire recording, rather than attempting to model its temporal
development [4].
Numerous emotional parameter models have been proposed,
with common parameters including arousal (level of excitement
or predisposition to activity), valence (positive or negative atti-
tude), and dominance (level of social dominance or submission
communicated). These or other individual parameters can then
be combined by placing them orthogonally in an emotional pa-
rameter space to create a dimensional model of the emotional
content of speech [2, 5, 6, 7].

1.2. Annotation process

In order to apply machine learning techniques to the task of con-
tinuous emotion recognition, it is necessary to supply the pre-
dictive system with training data defined on that emotional pa-
rameter space. Because experimenters have no direct access to
the emotions experienced by speakers and listeners, this training
data is obtained through a process of human annotation [8, 9].

2. Characteristics of annotations
In order to model continuous emotion annotations in a princi-
pled way, it is relevant to analyze the various factors that de-
termine the distribution of each annotator’s response to the sig-
nal at each point in time. Consider a speech recording S =
(S[1],S[2], . . . ,S[N ]), with each frame S[t] a vector of values
representing the content of the recording at that time (in prac-
tice, this may either be frames of the audio or multimedia file
itself, or feature vectors derived therefrom), with corresponding
annotations a[t] = (a1[t], a2[t], . . . , aM [t]), where for each
temporal frame index t∗ and each of M annotators drawn from
a population P (where |P | may be >> M ), am[t∗] ∈ [−1, 1]
is the rating of annotator m at time t∗. There are a number of
factors that could conceivably contribute to the value of am[t∗]:

1. The properties of the speech signal itself: S

2. The annotation provided by that annotator at other times:
am[t] for t 6= t∗

3. Systematic factors specific to that particular annotator m.

4. Uncorrelated noise.

In the following sections, we will treat these human annotations
as a random process, and analyze the effect on the distribution
of am[t∗] of the speech signal itself (1) and the annotations pro-
vided at other times (2). To isolate the effect of S on the distri-
bution of am[t∗], define

â[t] = |P |−1
∑

x∈P
ax[t]. (1)

To describe the conditional distribution of â given S is the
primary target of the prediction task of continuous emotion
recognition: it is the distribution over the perceived emotional
content of the utterance S at time t, averaged over the relevant
population P from which the annotators 1 . . .M are drawn.
As mentioned above, the standard in the field of continuous
emotion recognition is to use a series-of-means to represent the
emotional ground truth, which corresponds probabilistically
to a distribution with variance that is constant in time. As
such, it is relevant to enquire: is the variance of the conditional
distribution of â with respect to S indeed constant with respect
to time, or does it have some meaningful time-varying nature
which is not well-described by such a mean-only model?
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Figure 1: Histogram of the Pearson correlation coefficient between the disagreement of annotator partitions on each recording in the
dataset. The light blue bars represent the number of recordings with a correlation coefficient (averaged over all possible partitionings
into two equal groups) in each of 20 histogram bins, and the dotted red line is a Gaussian distribution fit to this data. Note that aside
from two valence recordings, 34 of the 36 total recordings exhibit a positive correlation.

The variance of this conditional distribution corresponds to
the inherent ambiguity of the speech signal itself, once unsys-
tematic noise and listener-specific factors are excluded. Thus,
we can rephrase the above question in the following terms:
are some sections of speech inherently more ambiguous than
others? Qualitatively, we can consider linguistic phenomena
such as sarcasm: in English, an utterance such as ”Isn’t that
great!” could be intended and perceived as conveying either
praise or criticism, corresponding to either high or low valence,
depending on whether the speaker is (perceived as) being gen-
uine or sarcastic. As sarcasm is not always reliably perceived
as intended, even within the same speaker-listener pair, this is
an example of an utterance that could be considered to contain
a high degree of inherent ambiguity. Emotional ambiguity has
been investigated in a categorical emotion classification setting
by Sobol-Shikler et al. [10], but has not recieved significant
attention in a continuous, dimensional emotion recognition
setting.
Regardless of the shape of the distribution at each individual
point in time, there is also the matter of potential temporal
interdependence in the joint distribution: is there some
time-mediated relationship between the annotation values at
different temporal frames? One important temporal property
to consider is that of smoothness: is there some correlation
between annotation values which are adjacent or nearby
in time? Qualitatively, some degree of smoothness would
seem appropriate, given the nature of emotion: if a person is
angry now, it is likely that they will still be angry in 500ms.
Annotators know this, and will not expect speech to change
wildly in affect every frame, lending a natural smoothness
property to their prior.

3. Experimental evaluation
3.1. Dataset

For the purposes of analyzing the properties of continuous emo-
tion annotations, we use the RECOLA dataset [8]; specifically,
the combined train and dev partitions of the data which are
used in the AVEC 2017 affective computing challenge [11].

This dataset consists of 18 recordings of dyadic interactions in
French, each lasting approximately 300 seconds, and annotated
by six independent humans (with each recording using a new
panel of annotators). This particular dataset was chosen as it
is the only CER dataset of significant size and number of an-
notators available for which the researchers have access to the
individual annotations, rather than only the mean over the an-
notators at each point in time, which was necessary to conduct
analysis of annotator disagreement.

3.2. Ambiguity

We analyze the RECOLA emotion annotation dataset to attempt
to distinguish whether such time-varying signal-dependent vari-
ability exists. First, the six human annotators m = 1 . . . 6 for
each recording are partitioned into two groups of three (GA and
GB), then the sample variances σA[t] and σB [t] over the three
annotations are calculated for each temporal frame. Each of
these two variance time series σA and σB are independent, and
represent the level of disagreement amongst each group about
the emotional content of the signal at each point in time. Some
of this disagreement will arise from differences between the hu-
man annotators, and some will be due to unsystematic noise, but
does any arise from the signal S itself? In order to analyze this,
we can compare the shape of these two time series — if the sig-
nal is inherently unambiguous, and all disagreement arises from
noise or from the differing characteristics of the human annota-
tors, then we would not expect to see any correlation between
the disagreement σA and σB of the two independent annotator
groups GA and GB . However, if there is some systematic am-
biguity in the speech signal, then we would expect to see some
degree of correlation between the time series, as regions of high
ambiguity in the speech signal should correspond to regions of
high variance across both groups, and vice versa.
As detailed in Table 1, the Pearson correlation coefficient be-
tween the disagreement time series calculated from groups of
three annotators, averaged over all possible annotator partition-
ings on the RECOLA dataset (AVEC2017 train and dev
recordings) is 0.19 for arousal and 0.11 for valence. Intuitively,
this is what we would expect to see if there was some degree of
ambiguity inherent in the signal — a positive but small correla-
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Figure 2: Correlation coefficient between the annotation and a
time-delayed version of itself, averaged over the 18 recordings.

Table 1: Results describing the correlation between the dis-
agreement of independent annotator groups on the RECOLA
dataset, showing the mean correlation coefficient across the 18
recordings, the sample standard deviation of the correlation co-
efficient, and the p-value for a one-tailed t-test, with null hy-
pothesis that no correlation exists (µ = 0).

Arousal Valence
µ 0.19 0.11
σ 0.09 0.08
p(µ = 0) 4.5× 10−7 4.9× 10−5

tion, with most of the annotator disagreement being attributable
to noise or to annotator differences, but some portion arising
from the signal itself. To demonstrate the statistical significance
of these results, Table 1 also shows the p-values for a one-tailed
t-test, with null hypothesis µ = 0, which would be the case
if no systematic ambiguity was present. For both arousal and
valence, this p-value is less than 0.0001, indicating that these
results would be extremely unlikely to be observed if no such
correlation exists. For further illustration, Figure 1 shows a his-
togram of the correlation values for each of the 18 independent
recordings in the dataset, along with a fitted Gaussian distribu-
tion.

3.3. Smoothness

We analyze the RECOLA emotion annotation dataset to deter-
mine the degree of correlation between annotated emotional pa-
rameter values as a function of their temporal distance. Fig-
ure 2 displays the Pearson correlation coefficient between the
time series of mean RECOLA annotations (over the six anno-
tators) with a time-delayed version of itself, averaged over the
18 recordings in the dataset. For both arousal and valence, this
autocorrelation is high for the five seconds or so, but declines
rapidly to zero at a 30-second delay, implying that the annota-
tions display smoothness on the scale of a few seconds. This
makes intuitive sense: we would not expect the emotional con-
tent of someone’s speech to change significantly every second,
but after half a minute, the emotional content may be very dif-
ferent.

4. Alternative models
In this section, we will discuss various models for the ’ground
truth’ continuous emotion recognition target for a single emo-
tional parameter dimension. While the actual list of annotation
values from each individual annotator contains all the available
information, this may not be the optimal choice of representa-
tion for the ground truth. Such a model would grow linearly
in complexity with the number of annotators, and so is proba-
bly not feasible for use with a large annotator pool. If we can
choose an appropriate model that is able to more concisely sum-
marize the relevant characteristics of the distribution of â, the
computational complexity of prediction can be reduced, and,
if the representation of the information is more relevant to the
prediction system, its accuracy could potentially be increased.

4.1. Mean-only

Currently, most continuous emotion recognition systems and
challenges use a series-of-means representation of ground truth
for each emotional parameter: at each point in time, the aver-
age annotation value is taken across the annotator pool, giving a
mean-only ground-truth model GMO = (µ[1], µ[2], . . . , µ[N ])
(see [11, 12, 13, 14]). To interpret this probabilistically, we can
equip each temporal frame with a Gaussian distribution with
mean µt and constant variance. While this model can repre-
sent the effect of the speech signal on the mean of the anno-
tation distribution, it cannot represent a non-constant variance
as discussed in Section 2, nor does it implement any temporal
smoothness property as discussed in 2.

4.2. Mean-variance

The above mean-only model can be generalized into
a mean-variance model by including a variance along
with the mean at each temporal frame: GMV =
((µ[1], σ[1]), (µ[2], σ[2]), . . . , (µ[N ], σ[N ])). This model is
able to additionally represent non-constant variance as dis-
cussed in Section 2, and is thus able to model ’inherent ambi-
guity’ in spoken utterances, unlike the previous model. Proba-
bilistically, we can equip each temporal frame twith a Gaussian
distribution N (µ[t], σ[t]). In practice, if these σ are derived
from the sample variance of annotations, then it may be neces-
sary to add a small constant value, or pass the series through
some smoothing function, to avoid the degenerate case of zero
variance.

4.3. Gaussian process

While the above mean-variance model is able to represent time-
dependent variance in the distribution of annotations, it does not
reflect any dependencies present between the annotation values
at different points in time. In particular, if we were to draw
a complete sample time series from a mean-variance distribu-
tion as described above, the result would be unlikely to display
any temporal smoothness; a highly positive value (relative to
the mean) is no less likely to occur after another highly positive
value than after a highly negative value, which does not reflect
an understanding of smooth short-term emotional development
through time, which we have demonstrated experimentally in
Section 3. In order to conform the distribution to our expecta-
tion of emotional content which varies at a limited rate in time,
we can define the joint distribution over all points in time using a
Gaussian process (GP). GPs provide a way to define a probabil-
ity distribution over a function space by defining the covariance
between output values as a function of the corresponding input
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values [15]. If we consider the time index as an input value
of the GP and the annotation (in emotional parameter space) as
the output value of the function, then a condition of temporal
smoothness can be applied to the distribution defined by the GP
by using a covariance function which assigns higher covariance
values to points which are closer in time. In a predictive set-
ting, Atcheson et al. [16] showed that such a model could be
combined additively with a covariance function defined over a
feature space containing S to improve predictions over a non-
temporal feature-space-only GP model. In order to use a GP
in practice to represent a distribution over emotional annota-
tions, the list of means in the previously-mentioned models can
be indexed with a mean function m[t] = µ[t]. The covariance
function c[t, t′] can then be constructed as follows:

c[t, t′] = cself[t, t
′] + ctime[t− t′] (2)

with cself[t, t
′] = σt where t = t′, and 0 otherwise, and

ctime[t − t′] represents relative temporal dependencies: the re-
lationship between the distributions of annotations at differing
points in time which is mediated by their temporal distance.
To incorporate an assumption of smoothness, we can use a
squared-exponential kernel:

ctime[t− t′] = σ2 exp

(
− (t− t′)2

2l2

)
(3)

where l determines the characteristic length-scale at which this
smoothness assumption is applied. Equipped with mean func-
tion m[t] and covariance function c[t, t′], samples from the
Gaussian process GP(m[t], c[t′, t]) will be likely to display the
required smoothness properties while still incorporating the in-
formation represented by the mean-variance model. This frame-
work can also be extended to express more complex distribu-
tional features if necessary: mixture-of-GP models can incor-
porate multimodality in the shape of the distribution[17], while
processes over non-symmetric distributions such as the skew-
normal distribution can incorporate distributional asymmetry
[18].

5. Discussion
While we have demonstrated that both ambiguity and temporal
smoothness are present in the perceived emotional content of
speech, this alone does not imply that it is necessary or desirable
to adopt ground-truth models for CER that incorporate these
features. However, there are a number of advantages of such
models over the standard mean-only representation which may
justify the additional complexity of these more general models:
• Qualitatively, these models may more correctly approximate

the true emotional content of speech. Given that emotional
communication and emotional expression are inherently am-
biguous processes, an assumption of non-ambiguity as im-
plied by mean-only ground-truth models runs counter to how
we qualitatively understand paralinguistics.

• As this research has shown, time-varying ambiguity is a fea-
ture of the signal in its own right. Taking only the mean
over the annotators destroys this information, so if a mean-
only model is used as the training target for a machine learn-
ing system, the system is deprived of bona fide information
about the training inputs, which it might otherwise be able
to use to inform its predictions.

• The proposed models are strictly richer than the mean-only
representation, so if used as the prediction target for a ma-
chine learning system, they may improve the utility of its

output: if the predictions are used as input to another system,
or are taken to be fused with the predictions of other systems
to produce a multi-system fusion result, the predicted ambi-
guity may be useful to these downstream systems. For ex-
ample, in a multi-system fusion, the ambiguity value can be
treated as a measure of confidence in the prediction, and the
contribution of the system to the multi-system fusion can be
up-weighted or down-weighted based on the degree of ambi-
guity, even if the goal of the multi-system fusion is to predict
only the mean value. Dang et al. in [19] demonstrate a sys-
tem to predict annotator disagreement, and show that areas
of lower disagreement correspond to more reliable predic-
tions with a Gaussian mixture regression based system, sug-
gesting that such an approach may improve predictions in a
multi-system fusion setting.

• The proposed GP-based model is a well-defined probability
distribution rather than simply a series of values, so it has a
number of advantages: pointwise predictions can be directly
compared against the distribution to determine their likeli-
hood, natively probabilistic systems can consume the distri-
bution directly, and samples can be taken from the distribu-
tion, which, if a temporal smoothness term is included in the
GP covariance function, will display the relevant smooth-
ness properties. Although the mean-only and mean-variance
models can be equipped with a probabilistic interpretation
which is useful on the scale of a single point in time, their
lack of a temporal smoothness term prevents them from cor-
rectly modelling the properties of an entire annotation time
series.

Ultimately, the utility of these alternative ground truth models
would need to be established through practical usage. If future
CER competitions were to include more detailed ground-truth
models as targets alongside traditional mean-only models, this
could provide a basis on which different approaches to ground-
truth could be compared in practice.

6. Conclusion
In this paper, we have shown using the RECOLA dataset
that there is a component of annotator disagreement in con-
tinuous emotional parameter annotation which arises from the
speech signal itself, in addition to disagreement arising from
differences between the human annotators or from unsystem-
atic noise. We also show that these emotion annotations dis-
play a degree of temporal smoothness on the scale of a few
seconds. Because standard series-of-means representations of
ground truth emotional content used in typical contemporary
CER applications are unable to model either of these features,
we proposed two more general models: a mean-variance model
that incorporates ambiguity, and a Gaussian process model that
additionally incorporates temporal smoothness to produce a
fully-fledged probability distribution over the perceived time-
varying emotional content of an entire speech recording. These
models offer a number of potential advantages over mean-only
models: they more correctly describe our intuitive understand-
ing of emotional communication, they are able to supply more
information about training signals to machine learning systems,
and predictions generated in this format may be more useful to
downstream systems which consume those predictions.
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