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Abstract
In this paper, a speech enhancement approach exploiting the
efficacy of non-local means (NLM) estimation and variational
mode decomposition (VMD) is proposed. The NLM estimation
is effective in removing noises whenever non-local similarities
are present among the samples of the signal under consider-
ation. However, it suffers from the issue of under-averaging
in those regions where amplitude and frequency variations are
abrupt. Since speech is a non-stationary signal, the magnitude
and frequency vary over the time. Consequently, NLM is
not that effective in removing the noise components from the
speech signal as observed in the case of image enhancement. To
address this issue, the noisy speech signal is first decomposed
into variational mode functions (VMFs) using VMD. Each of
the VMFs represents a small portion of the overall frequency
components of the signal. The VMFs are then combined
into different groups depending on their similarities to reduce
computational cost. Next, the non-local similarity present
in each group of VMFs is exploited for an effective speech
enhancement through NLM estimation. The enhancement
performance of the proposed method is compared with two
existing speech enhancement techniques. The experimental
results presented in this study show that, the proposed method
provides better speech enhancement performance.

Index Terms: Speech enhancement, noisy speech, non-local
means, variational mode function.

1. Introduction
With the recent development of machine learning algorithms,
the primary focus of research in speech processing is to cre-
ate robust human-machine interactive systems. The speech sig-
nal used for the development of automatic speech and speaker
recognition systems, in most of the cases, is degraded by am-
bient noises present in the recording environment and commu-
nication channel [1]. The performance of those systems reduce
significantly when the test data is noisy [2,3]. Therefore, speech
enhancement is an essential component for developing robust
speech-based user applications. The suppression of noise com-
ponents from speech signal to improve the quality and intelligi-
bility is not only essential but also extremely challenging.

Over the years, several approaches for speech enhancement
have been reported. Most of the classical speech enhancement
approaches are subtractive in nature [4–6]. In those approaches,
short-time noise spectrum is estimated from the non-speech re-
gions determined using voice activity detection (VAD) module.
Then, the estimate of the noise spectrum is subtracted from the
noisy speech spectrum to enhance the signal quality [4–6]. The
performance of such approaches is highly dependent on the ac-
curacy with which the non-speech region are detected and ro-

bust estimation of instantaneous noise spectrum [7, 8]. Several
techniques have been proposed for estimating the noise spec-
trum from the noisy speech signal [9–11]. However, such spec-
tral enhancement methods introduce distortion in the enhanced
speech signal due to deviations in estimated and actual instan-
taneous noise spectrum [8, 12]. In the enhancement approaches
presented in [13–16], the high signal to noise ratio (SNR) re-
gions are identified and relatively more enhanced compared to
the low SNR regions. The linear prediction (LP) residual signal
corresponding to the small regions around the instants of signif-
icant excitation are weighted to enhance those regions relative
to other portions. The speech signal is reconstructed using the
modified LP residual signal. Such temporal enhancement meth-
ods are not efficient in completely removing the background
noise from the noise degraded speech signals [16].

Recently, several adaptive signal decomposition meth-
ods like empirical mode decomposition (EMD) and it’s vari-
ants have been proposed for suppressing stationary and non-
stationary noises from the noisy speech signal [17–20]. The
combination of EMD and variational mode decomposition
(VMD) has also been explored for speech enhancement [21].
This method is effectively reduce the low-frequency noise as
well as high-frequency noise. However, those signal decom-
position methods are not effective when the speech signal is
corrupted by speech-like noises [21].

The non-local means estimation, a well explored method
for denoising image and electrocardiography (ECG) signals, is
effective in removing the noises whenever non-local similari-
ties are present among the samples of the signal [22, 23]. Since
speech is a non-stationary signal, the magnitude and frequency
vary over the time. Consequently, NLM is not that effective
in removing the noise components from the speech signal as
observed in the case of image and ECG enhancement. This
issue can be addressed up to an extent by decomposing the sig-
nal into different narrow-band regions. The VMD algorithm
decomposes a signal into a predefined number of narrow-band
variational mode functions (VMFs). Each of the VMFs rep-
resents some smaller portion of the overall frequency band of
the signal. Unlike the noisy speech signal, the VMFs do not
have abrupt amplitude and frequency variations. Through this
motivation, a speech enhancement approach is proposed in this
paper by utilizing the efficacy of VMD and NLM estimation.

The remainder of this paper is organized as follows: The
proposed method for speech enhancement using NLM estima-
tion of VMFs is presented in Section 2. The experimental stud-
ies for evaluating the performance of the proposed and existing
techniques are presented in Section 3. Finally, the paper is con-
cluded in Section 4.
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2. Proposed speech enhancement approach
The block diagram summarizing the proposed method for
speech enhancement is shown in Fig 1. In the proposed ap-
proach, the speech enhancement is performed by processing the
noisy speech signal through the following steps:

i) The noisy speech signal is decomposed into k number
of VMFs using VMD. The VMFs having lower center
frequency predominantly represents the high magnitude
vowel-like regions where as the VMF having higher center
frequency represent the unvoiced sound units.

ii) Then, the VMFs are divided into j groups depending on the
similarity in their center frequencies and magnitude spec-
trum since those VMFs represent similar sound units.

iii) The VMFs in each group are summed and NLM estima-
tion is performed to remove the noise components. The
grouping of VMFs reduces the computational cost.

iv) Finally, the NLM estimated signals obtained from each of
the groups are combined to obtain the enhanced signal.

The method proposed in this study primarily depends upon the
NLM estimation of the VMFs. In the following sub-sections,
a brief introduction to VMD and a discussion on the need for
grouping of VMFs is presented. Then, NLM estimation for re-
moving noise components from VMFs is discussed.

2.1. Variational mode decomposition of noisy speech

The VMD is a non-recursive, concurrent signal decomposition
method that breaks the given input signal (s(t)) into several
modes termed as VMFs [24]. Each VMFs (vk) represents a
narrow-band frequency region of the input signal. The VMD
also estimates the center frequency (ωk) of each VMFs as H1-
norm. The center frequencies are sparsity priors which helps in
reconstruction of input signal s(t). The vk and ωk are computed
by solving the constrained variational problem as follows:

min
{vk},{ωk}
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k
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δ(t) +
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such that
∑
k vk(t) = s(t). Where, {vk} = {v1, v2, .....vk},

{ωk} = {ω1, ω2, ......ωk}, k, δ(t) and ∗ represents the VMFs
(modes), the center frequencies for each of the VMFs, total
number of modes, Dirac distribution and convolution operator,
respectively.

The signal reconstruction constraint is addressed by using
Lagrangian multipliers (λ) and the quadratic penalty factor (α).
The convergence properties of the penalty term at a finite weight
value and strict enforcement of constraint by the Lagrangian
multiplier are being utilized. The augmented Lagrangian L is
represented as follows:
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By using augmented Lagrangian and the alternate direction
method of multipliers optimization framework, the VMFs and
corresponding center frequencies can be computed. After op-
timization, the resultant updated modes {v̂k} in frequency do-

Figure 1: The block diagram representing proposed method for
enhancing speech signal.

main are computed as follows:

v̂n+1
k (ω) =

ŝ(ω)−∑i 6=k v̂i(ω) +
λ̂(ω)
2

1 + 2α(ω − ωk)2
(3)

where v̂(w), ŝ(w) and λ̂(w) are the frequency domain repre-
sentations of vk(t), s(t) and λ(t), respectively. The modes in
time domain, vk(t) can be obtained from v̂k(ω) using the in-
verse Fourier transform. Similarly, the updated center frequen-
cies are optimized in Fourier domain as follows:

ωn+1
k =

∫∞
0
ω|v̂k(ω)|2dω∫∞

0
|v̂k(ω)|2dω

(4)

It locates the updated frequency which is at the center of the kth

mode power spectrum.

2.2. Grouping VMFs to reduce variations

If a large number of modes are selected for decomposition,
under-binning of modes (loss of information) happens. On the
other hand, lower number of modes results in over-binning of
modes (mode duplication) [24]. During the preliminary exper-
iments performed on development set, it was observed that for
effective decomposition and reconstruction of speech signal, a
minimum of k = 12 levels of decomposition is required. The
magnitude spectra for the 12 VMFs derived from a 0dB white
noise added speech signal are shown in Figure 2. The mag-
nitude spectra shown from left to right in ascending order of
VMFs. It can be observed that, in the each of the VMFs, fre-
quency and amplitude variations are very small. It can also be
noted that, depending upon the similarities in the location of
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Figure 2: Magnitude spectrum of VMFs for a 0 dB white noise added speech signal. The modes are arranged from low- to high-
frequency band (left to right).

their center frequency and mean magnitude, some of the VMFs
can be combined together. For example, VMF−3 to VMF−5
can be combined to represent a single group. The VMFs are
combined to reduce the computational cost for NLM estimation
without loss in denoising capability. In this study, the VMFs are
finally clustered into four groups.

2.3. NLM estimation

The NLM approach estimates the true signal from the noisy
signal by exploiting the non-local similarities among the sam-
ple points. In NLM filtering, for each sample point of the sig-
nal x(n), an estimate x̂(n) is computed as a weighted sum of
the signal values at another sample point x(m). The final de-
noised signal is computed with the help of two local patches
with starting points being n and m, respectively. Both the
patches consist of P samples and they lie within the search-
neighborhood N(n). The estimated denoised signal is com-
puted as follows [25]:

x̂(n) =
1

W (n)

∑

mεN(n)

w(n,m)x(m) (5)

For each sample point, the mapping is decided by weight values
w(n,m) that represent the non-local similarity present in the
neighborhood with respect to the sample points x(n) and x(m),
respectively. The weight valuew(n,m) is computed as follows:

ω(n,m) = exp

(
−
∑P
j=1(s(n+ j)− s(m+ j))2

2PB2

)
(6)

where, B represents the bandwidth parameter which controls
the amount of smoothing to be applied to the denoised signal.
The difference values are summed overP samples (length of the
patch) and normalized in order to get the weight value. W (n)
represents the normalized weight value at sample point nwhich,
in turn, is computed as follows:

W (n) =
∑

mεN(n)

w(n,m) (7)

2.4. Final speech enhancement by NLM estimation of
VMFs

In the case of speech, the amplitude and the frequency change
over the frames depending on the sound units. Therefore, the
NLM is not effective in enhancing noisy speech signal. How-
ever, as discussed in Section 2.2, those variations are suppressed
to a great extent by grouping the VMFs. The NLM estimation is
performed on the signal obtained by adding the VMFs belong-
ing to any particular group. The final reconstruction is done by
adding each of the NLM estimated outputs as shown in Figure 1.

The effectiveness of the proposed approach for speech en-
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Figure 3: The plots illustrate enhancement of noisy speech sig-
nal by using propose method. (a) A segment of speech taken
from TIMIT database with 0 dB white noise added to it. (b)-
(e) the four groups of VMFs obtained by combining original
VMFs. (g)-(j) VMFs after denoising using NLM estimation, (f)
the original clean signal (k) enhanced signal obtained by pro-
posed approach.

hancement is demonstrated in Figure 3. It is evident that, the
fluctuations in each group of VMFs is very less. The NLM ef-
fectively removes the noise components from the VMFs. By
comparing the original clean and enhanced speech signals, it is
evident that the proposed approach is very effective in removing
the noise components from the given speech data. Similar infer-
ences can be drawn by comparing the spectrograms for clean,
noisy and enhanced speech signals shown in Figure 4.

3. Results and discussions
We have applied 12-level decomposition of noisy speech signal
using VMD technique. For VMD, the data fidelity constraint
balancing parameter was set 320, time-step was 0 while toler-
ance of convergence was selected as 10−7. The NLM estima-
tion is dependent on proper selection of some tunable param-
eters like patch size (P ), search neighborhood size N(n), and
bandwidth parameter (B). In this study, the value of P , N(n)
and B are selected as 10, 200 and 0.4σ, respectively on first
group VMFs. Similarly P , N(n) and B are selected as 10, 100
and 0.6σ on second group. For third and fourth groups those pa-
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Table 1: Performance evaluation of the proposed and existing speech enhancement techniques in terms of scale of background intru-
siveness (BAK), scale of the mean opinion score (OVL), segmental signal to noise ratio (segSNR) and perceptual evaluation of speech
quality (PESQ). The performances are evaluated after degrading the speech data with white, factory and babble noises. For each cases,
three different SNR values are chosen.

Noise
SNR BAK OVL segSNR PESQ
in dB FBE EMD-VMD Prop. FBE EMD-VMD Prop. FBE EMD-VMD Prop. FBE EMD-VMD Prop.

W
hi

te 10 2.57 3.23 3.30 3.05 3.19 3.28 4.58 5.81 5.77 2.56 2.71 3.01
5 2.36 2.70 2.96 2.73 2.85 3.01 3.09 4.59 4.80 2.34 2.40 2.85
0 2.07 2.23 2.76 2.33 2.14 2.74 2.18 2.66 3.87 2.03 2.19 2.51

Fa
ct

or
y 10 2.37 2.73 2.92 2.82 2.75 2.83 4.30 4.34 5.41 2.45 2.57 2.71

5 2.12 2.18 2.54 2.40 2.39 2.49 2.97 2.52 3.38 2.23 2.35 2.46
0 1.83 1.68 1.93 2.16 2.05 2.27 -0.62 -0.77 -0.22 2.02 1.98 2.29

B
ab

bl
e 10 2.21 2.79 2.70 2.55 2.61 2.73 4.54 4.42 5.26 2.36 2.44 2.41

5 1.93 2.24 2.31 2.19 2.52 2.86 2.64 2.66 3.08 2.17 2.02 2.14
0 1.61 1.72 1.78 1.81 1.96 2.15 -0.86 -1.01 -0.30 1.79 1.85 1.92
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Figure 4: (a) A segment of clean speech signal taken from
TIMIT database. (b) The signal after adding 0 dB white noise.
(c) Enhanced signal obtained by using the proposed method.
(e)-(f) Spectrograms for clean, noisy and enhanced speech sig-
nals, respectively.

rameters are selected as 20, 80 and 0.8σ, respectively. Where
σ represents the standard deviation of the summed signal of re-
spective group of VMFs. All the tunable parameter values were
selected empirically.

The proposed approach is compared with two existing
speech enhancement techniques reported in [16, 21]. The en-
hancement technique reported in [16], is motivated by the fact
that, the characteristics of the interfering sources vary with re-
spect to time. Consequently, the interfering background noise
can temporally overlap with the desired speech or it can ex-
ists as an isolated event in the recorded signal. To address this
issue, a two stage approach was proposed in that work. Fist
the foreground speech was segmented from rest of the back-
ground noise. Then, the LP analysis was performed on fore-
ground speech. The regions around the glottal closure instants
in the LP residual signal and the LP formants were then modi-
fied to reconstruct the enhanced speech. In rest of the paper this
method is termed as FBE. In [21], an effective combination of
VMD and EMD techniques was explored for speech enhance-
ment. EMD was used to break the noisy speech signal into a

number of intrinsic mode functions (IMFs). Next, a set of IMFs
were summed up and VMD was then applied on summation of
selected IMFs. This speech enhancement method is referred to
as EMD-VMD in this paper.

In order to evaluate the efficacy of the existing and pro-
posed approaches, speech signals from the TIMIT database [26]
were used. A set of 10 speech utterances from 5 male and 5 fe-
male speakers was used for experimental evaluations. The clean
speech files were corrupted by adding white noise, factory noise
and babble noise at three different levels of signal to noise ra-
tios ( 0, 5, and 10 dB). These non-stationary background noise
sources were obtained from the Noisex-92 database [27]. The
following objective speech quality measures were used for eval-
uating the performance: perceptual evaluation of speech qual-
ity (PESQ) [28], scale of background intrusiveness (BAK) [28],
scale of the mean opinion score (OVL) [28] and segmental sig-
nal to noise ratio (segSNR) [29].

The results of the experimental evaluations are given in
Table 1. Compared to the existing approaches, the proposed
speech enhancement technique is noted to result in better BAK,
OVL, segSNR and PESQ values especially for low SNR val-
ues (i.e., 0 and 5 dB). Consistent improvements are noted for
all the three noise types explored in this study. The best case
performances are presented in boldface to highlight the same.
Expect for 10dB white noise and 10dB babble noise cases, the
proposed approach is observed to be significantly better.

4. Conclusion
In this paper, a two-stage VMD-NLM based speech enhance-
ment technique has been proposed. The noisy speech signal
is first decomposed into 12 VMFs using the VMD algorithm.
Next, based on the similarities in the location of center fre-
quencies and the mean amplitudes, the VMFs are clustered and
summed to yield a set of four VMFs. This step reduces the over-
all computational cost. The so obtained VMFs are then pro-
cessed through NLM estimation in order to effectively reduce
the ill-effects of interfering noises. The proposed approach is
compared with two of the recently developed speech enhance-
ment techniques in terms of objective speech quality measures
like BAK, OVL, segSNR and PESQ. Three different noise types
at different SNR levels are used for experimental evaluation.The
proposed speech enhancement approach is observed to be better
than the explored methods.
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