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Abstract
When scaling to low resource languages for speech synthesis
or speech recognition in an industrial setting, a common chal-
lenge is the absence of a readily available pronunciation lexicon.
Common alternatives are handwritten letter-to-sound rules and
data-driven grapheme-to-phoneme (G2P) models, but without a
pronunciation lexicon it is hard to even determine their quality.
We identify properties of a good quality metric and note draw-
backs of naı̈ve estimates of G2P quality in the domain of small
test sets. We demonstrate a novel method for reliable evaluation
of G2P accuracy with minimal human effort. We also compare
behavior of known state-of-the-art approaches for training with
limited data. Finally we evaluate a new active learning approach
for training G2P models in the low resource setting.
Index Terms: grapheme-to-phoneme models, low-resource
languages, language resource evaluation, metric, scale, align-
ment, active learning

1. Introduction
A pronunciation model, also known as a letter to phoneme con-
version system, is a linguistically informed system to produce
a phonemic representation of a word. The word is converted
from the sequence of letters in the orthographic script to a se-
quence of phonemes (sound symbols) in a pre-determined no-
tation standard, such as IPA, X-SAMPA, etc. To perform this
task, on one extreme one could store all word-pronunciation
pairs in a lookup-table and on the other, one could approximate
the sounds by simply storing the phonemes corresponding to
each letter in the alphabet. While the latter works badly when
the same orthographic segment can have a number of different
pronunciations, the former does not scale well to proper names,
languages with productive compounding, etc. Thus, neither is
typically sufficient, and we have a spectrum of non-trivial mod-
els in between.

Pronunciation models are critical components of both
speech recognition (ASR) and synthesis (text-to-speech, TTS)
systems. Even though end-to-end models have been gathering
recent attention [1] [2], most state-of-the-art models in current
industrial production systems involve conversion to and from
an intermediate phoneme layer. In synthesis, we convert a se-
quence of words to a sequence of “sound symbols” which are
then converted to audio. This happens in reverse in ASR sys-
tems. It is in fact possible to share the same pronunciation
model in traditional TTS and ASR systems, the mapping being
used in opposite directions.

To scale pronunciation models across languages we need a
data-driven approach, but data is often the bottleneck in several
languages. The process of correctly labeling data (also called
transcription of pronunciations) tends to be skillful work. For
low-resource languages, there is typically no readily available
pronunciation lexicon of size even large enough to train a rea-
sonable G2P model. Further, transcribers are particularly hard

to find as linguistic expertise is difficult to come by. Transcrip-
tion reliability is relatively harder to ensure since we cannot typ-
ically augment transcription quality by playing back synthesis
[3] for these languages, as good synthesis systems are hard to
build without having a good pronunciation model first. For the
same reason, it is also hard to build a good Pronunciation Learn-
ing model [4] [5].

Several other unique challenges are posed by this setting.
Many recent advances in recurrent neural network based algo-
rithms [6] don’t apply as well because the data available is not
large enough. In other words, we can’t have powerful paramet-
ric algorithms with many parameters here as that would lead to
overfitting. Another challenge noted during this work is the ex-
istence of scripts where there may still be multiple codepoint
sequences in Unicode Normalized Canonical Form that corre-
spond to the same visual rendering (resulting in noisy data), e.g.
in Indian scripts, which make it tricky to do G2P reliably, can
cause confusion in alignment, etc.

2. Background and Related Work
Handwritten G2P rules are often used as the G2P model when
data is scarce to build a good model by standard techniques.
More scalable data-driven techniques for building G2P models
for low resource languages have been recently developed. For
example, by identifying closely related high-resource languages
and extrapolating between them [7], or using a mix of language
specific and language independent techniques [8], it is possi-
ble to obtain G2P models without having a pronunciation lexi-
con. The robustness of the quality claims are however not clear.
For example, only 200 words are used for test set for most lan-
guages, sometimes even just 50 words in [7, Sec. 4.4, pp. 402].
We demonstrate in the following sections that pure WER is un-
reliable for small number of test words due to high variance.
We also provide a framework for comparing evaluation metrics
in this setting and a novel metric for evaluation.

Another interesting outcome of a robust extrapolative ac-
curacy estimation, would be a step towards the “elusive” goal
of determining whether a pronunciation model meets a certain
threshold coverage without explicitly transcribing all the words
[9, Sec. 1]. To this end, we also study behavior of various
state-of-the-art techniques of building G2P models with vary-
ing amounts of limited data. Well known successful techniques
include doing a joint-sequence alignment using n-grams [10] or
using recurrent neural networks [6] [11].

Active learning has been attempted in the past [9], [3] for
G2Ps. We also present a new alignment based active algorithm
which shows good quality with fewer transcriptions.

3. G2P Evaluation
We start with noting that most of the following work is not done
using typical low-resource languages. This is deliberate since
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Figure 1: Accuracy estimates by different metrics on different subset sizes.

we want to evaluate our evaluation metrics against standard
metrics which involve large pronunciation lexicons and creat-
ing a large pronunciation lexicon is, by definition, infeasible for
low-resource languages. We get around this issue by pretend-
ing we have to do pronunciation model training and evaluation
without a lexicon for languages where we actually have a pro-
nunciation lexicon. This setting simply allows us to simulate
transcriptions by simple lexicon look-up from large pronuncia-
tion dictionaries written by experts.

Note that throughout this work we assume we use the Word
Error Rate, i.e. the absolute fraction (over a large vocabulary)
of words where G2P yields an inexact phoneme sequence, as
the measure of G2P accuracy. To evaluate a G2P, we consider
the class of approaches which sample a subset of the vocabu-
lary of interest and test the G2P on the sample to estimate the
accuracy. In what follows, we overload the term metric to refer
to the combined framework of sampling and estimating quality,
as well as the measure of quality itself.

3.1. What’s a “good” metric?

Any usable metric for G2P evaluation must converge to a lim-
iting value in the limit of extensive evaluation. We identify fol-
lowing additional properties that a ‘good’ metric (for evaluation
with few transcribed words) should satisfy

• Converges fast: The metric should achieve its limiting
value using as few words as possible.

• Converges reliably, i.e. close to true error value (on
full vocabulary): An estimator of word error rate should
yield good approximation of word error rate on known
vocabulary, using just pronunciations for the limited set.

• Converges stably: Variance should be low in the intended
range of data size. Convergence properties should hold
irrespective of G2P choice and vocabulary (as long as it’s
large enough).

Intuitively, these properties allow the metric to be a good
proxy to full scale transcription on the known vocabulary.

3.2. Proposed metric

We describe below a metric inspired from the Feature Coverage
Maximization algorithm of [12]. As suggested there we use a

stratified version, i.e. sub-divide the budget of transcriptions
among words of different lengths in proportion to frequency.
This is to avoid choosing really long words, which tend to be
difficult to transcribe accurately, as a practical matter. Let V
be the set of words in the vocabulary. This is essentially the
set of words we want to evaluate the G2P accuracy on. Also,
let W (n,w) denote the number of times a character 4-gram n
appears in a word w ∈ V . Also for character 4-gram n and
word w define,

wt0(n) :=
∑

w∈V
W (n,w) (1)

cov0(w) :=
∑

n∈N(w)
wt(n) (2)

where N(w) is the set of 4-grams in w.
We greedily select (add to a set S) the word wj (wj ∈ V \

S) with maximum covj(w) and update

wtj+1(n) = αwtj(n), ∀ n ∈ N(wj) (3)

covj+1(w) =
∑

n∈N(w)
wtj+1(n), ∀ w ∈ V (4)

for discount factor α = 0.2 (anything in [0.1, 0.5] works as
well). This is repeated until |S| equals the budget of transcrip-
tions. The estimate of accuracy η is given by

η =

∑
w∈C cov0(w)∑
w∈S cov0(w)

(5)

where C denotes the set of transcriptions from S where the
G2P is correct. In addition to the definition of η, we note that
the other significant difference from [12] is that wt0(n) = 1
in their work. In the next section we note how this change is
crucial in deciding the metric quality.

3.3. Comparative study

We show the importance of the weighting extension by simulta-
neously plotting weighted and unweighted versions of the fea-
ture coverage algorithm, alongside the baseline metric of com-
puting vanilla WER on a random sampling. We do this by look-
ing successively at the three parameters of metric goodness. For
the empirical evaluation we estimate accuracy of G2P models
built using the traditional joint n-gram approach in [10] for a
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set of six languages. The known vocabulary consists of up to
hundreds of thousands of words for each language, essentially
all words in our pronunciation lexicons. We do 5 iterations
from different vocabulary subsets for each language of selecting
subsets of sizes 100, 200, ..., 1000 and compute accuracy using
three metrics: ‘Random’ sampling with usual WER, ‘Weighted-
FCM’ or ‘WFCM’ i.e. metric of 3.2, and ‘FCM’ i.e. metric of
3.2 with unit initial weights. See Figure 1 for metric values for
a single iteration. The ‘True’ line in the figure corresponds to
WER for the known vocabulary (using pronunciation lexicon).

3.3.1. Convergence rate

We plot averages over iterations for different languages (omit-
ted for space) and note that WFCM is the fastest to converge.
For most languages WFCM is already very close to the limit-
ing value in the range 200-300 words and stays stable after that.
Random and FCM take significantly longer to stabilize, and for
most languages are not as stable even with 1000 transcriptions.

3.3.2. Convergence point

Convergence point is computed by estimating the limit to be
the average of the iterations 800, ..., 1000 for the respective al-
gorithms. Notice both Random and WFCM are good approx-
imates to true error but FCM is less reliable. We know that
Random does converge to the exact true error in the limit, but
it does not perform well on the other two criteria. For WFCM
we can’t give equally strong guarantees, and rely on empirical
convergence reasonably close to the true value.

3.3.3. Convergence stability

We compute coefficient of variance for iterations on sizes
200, ..., 500 which is the typical range of transcriptions where
the subset size should lie for our algorithm, and notice an over
25% reduction w.r.t. random choice. We also note that FCM
stability is not better than Random on average.

4. Comparison of Training Algorithms
In this section we look at a few well-known state-of-the-art G2P
training algorithms and compare their performance with limited
training data.

4.1. Experiment Setup

We consider two broad categories of approaches: n-grams with
different n values in [10] and sequence-to-sequence attention-
based RNN-transducer models [11] [13]. We select subsets us-
ing the algorithm in [12] (also described in Section 3.2 above)
of different sizes, train models based on pronunciations in the
subsets and estimate model accuracies using the metric in Sec-
tion 2.

We evaluate joint-sequence n-gram models for different
values of n. The model qualities are observed to be near-
identical for n > 3, so we note observations on just n ∈
{2, 3, 5} here. Our RNN-transducer (‘rnnt’) models uses an
encoder with 3 LSTM layers, each with 256 units. We used
dropout [14] with a keep value of 0.9. The decoder network
also uses 3 LSTM layers, each with 256 units, but with dropout
keep value of 0.6.

We do training and evaluation on disjoint subsets, and in
each case use a reliable amount of data for evaluation (See
section 2). We repeat the experiment for training subset sizes
from {100, 150, 200, 250, 300, 350, 400, 450, 500, 750, 1000}
for the different models. For rnnt models, we only run for
{500, 750, 1000} as the models don’t readily converge for
lower values. We perform the experiment on a large range of
languages, and present observations from a representative sub-
set below.

4.2. Evaluation

We note that 2-grams actually perform better than more com-
plicated models in certain languages (for instance Kannada and
Finnish in Figure 2) when we have very few words to train on.
Similarly rnnt models work poorly in this domain even though
they are known to be at par, or even better, with larger amounts
of data. This indicates that more sophisticated models tend to
overfit and generalize at the wrong level when given less data,
and hence in a language with highly regular pronunciations like
Finnish they are likely to learn complex rules from exceptions
in training data and make more mistakes.

We can use the slope of the training curves in Figure 2 to
determine whether adding more words will help with accuracy.
For example, by observing the plots it’s fair to deduce that En-
glish would benefit the most by transcribing more words and

Figure 2: Accuracy estimates for different training algorithms on different subset sizes.
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Finnish/Kannada would benefit the least. This can be tracked to
allocate resources for transcription more judiciously while si-
multaneously scaling to multiple low resource languages. We
can frame this as a simple submodular optimization problem
[15] to get the maximum quality boost for our budget, and
use greedy selection to get near-optimal results with theoreti-
cal guarantees [16] [17].

Based on the experiments above we conclude that the best
model varies with language and amount of training data. While
some trends can be guessed based on linguistic properties of the
language, this is especially hard for the more black-box neural
models. Thus it is useful to test out a bunch of different models
using a robust, reliable metric and select the model with the
highest accuracy.

5. Active G2P Training
5.1. Best known (offline) approach

We implemented a few known and new heuristics for offline op-
timization, but the algorithm in [12] , also described in Section
3.2 above, seems to outperform all.

5.2. New (active) approach

We describe a novel active learning approach to G2P training
to determine successive batches for transcription and use them
to train a G2P model. Empirical evaluation shows the new ap-
proach is as good as the offline approach in general, and can be
significantly better in the low-resource setting.

We start with transcribingK0 (250) words selected with the
offline approach and train an n-gram G2P (n = 5) on these.
We use a simple aligner for grapheme chunks and phoneme
chunks to obtain a set of ‘graphone’ alignments for any word-
pronunciation pair built in the bottom-up manner of [18]. For
example an aligner with mappings [a;{ a;A c;k s;s s;S sh;S h;ε]
(here ε indicates no phoneme, remaining phonemes are in the X-
SAMPA notation) will give two alignments for the pair “cash,
kAS”, namely c;k a;{ s;S h;ε and c;k a;{ sh;S.

We perform alignments for all the transcribed word-
pronunciation pairs as well as for G2P pronunciations
and compute the graphone alignment errors (inser-
tions+substitutions+deletions per occurrence in transcribed
pair) for each graphone g, and scale by its frequency to get
wt0(g). For unseen graphones we simply set wt0(g) to the
frequency of the graphone in the alignments. This gives us an
estimate for how error-prone a graphone is. To obtain the next
subset we update equations similar to equations 3 and 4

wj := argmaxw∈V covj(w), V = V \ {wj} (6)

wtj+1(n) = αwtj(n), ∀ n ∈ N(wj) (7)

wtj+1(g) = βwtj(g), ∀ g ∈ G(wj) (8)

covj+1(w) =
∑

n∈N(w)

wtj+1(n) +
∑

g∈G(w)

wtj+1(g) (9)

where G(w) is the set of all graphone alignments for w, α =
0.2 and β = 0.5. This way we can add the words containing
orthographic segments with more potential alignments (we use
truncation of at most 4 alignments per word to handle the po-
tential exponential blow up).

5.3. Experiments

Transcriptions are simulated by simply looking up the pronun-
ciation lexicon for the subset of words selected by the algo-

rithm for transcription. We compute accuracies for the two ap-
proaches for subset sizes 500, 1000, 1500, 2000.

Table 1: Accuracy (%) active vs. best offline

Lang\Size 500 1000 1500 2000
French (France) 55/49 62/61 69/67 72/72
Spanish (Spain) 40/36 48/44 53/51 58/57
Filipino (Phl.) 82/80 84/84 87/86 88/88
English (US) 23/20 31/27 38/30 45/37
Kannada (India) 91/92 96/97 97/97 98/98
Bengali (India) 63/68 68/72 75/76 78/78
Hindi (India) 29/45 38/54 49/59 59/62

For comparing the performance of the two approaches, we
organize the accuracies in Table 1. We observe a significant
improvement in accuracy by using the novel approach, espe-
cially in French, Spanish and English. The pattern is particu-
larly prominent in low transcription range, and tends to wane
with higher amounts of training data. The new approach ac-
tively identifies transcription errors (important, for instance, if
one uses L1 speakers instead of linguists for transcription) and
exceptional alignments, and we try to learn more words to learn
the correct mapping for the error-prone graphones.

We note that obtaining correct graphone alignment can be
a challenge for languages like Hindi (or Bengali) where there
can be multiple words with correct Unicode Normalization cor-
responding to the same visual rendering. For example, Bengali
letter ‘RA’ (U+09B0) is sometimes typed as Bengali letter ‘BA’
(U+09AC) followed by Bengali nukta sign (U+09BC). Often
these are hard to clean or filter by normalization. As a result, us-
ing the graphone-based approach can actually slow down learn-
ing as we look at ‘spurious ambiguities’ in alignment.

6. Conclusion and Future Work

It’s interesting to note how we can use novel heuristics pre-
sented here to better handle challenges posed by low-resource
language G2P training and evaluation. We should, and are able
to, do a more robust evaluation than verification on a small ran-
dom subset. We also note that simpler models can beat more
sophisticated models in the low resource setting, as they are less
likely to overfit.

We plan to use and potentially improve these ideas to scale
G2P evaluation and training, and are already looking at apply-
ing these to TTS and ASR systems for South Asian regional
languages. We frame the transcription task as a correction task
for the G2P pronunciations, which will likely make it faster and
yield a better transcription.

Finally we note that although the work here describes the
grapheme-to-phoneme problem, most of the paradigms intro-
duced here easily generalize to sequence alignment problems in
low data setting. It should be interesting to consider application
of the ideas presented here to other such settings, especially in
the speech technology domain. Another interesting direction to
consider is to extend this study to other relevant metrics like
edit-distance based phoneme error rates.
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