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Abstract

The issue of the spoofing attacks which may affect automatic
speaker verification systems (ASVs) has recently received an
increased attention, so that a number of countermeasures have
been developed for detecting high technology attacks such as
speech synthesis and voice conversion. However, the perfor-
mance of anti-spoofing systems degrades significantly in noisy
conditions. To address this issue, we propose a deep learning
framework to extract spoofing identity vectors, as well as the
use of soft missing-data masks. The proposed feature extraction
employs a convolutional neural network (CNN) plus a recurrent
neural network (RNN) in order to provide a single deep feature
vector per utterance. Thus, the CNN is treated as a convolu-
tional feature extractor that operates at the frame level. On top
of the CNN outputs, the RNN is employed to obtain a single
spoofing identity representation of the whole utterance. Exper-
imental evaluation is carried out on both a clean and a noisy
version of the ASVSpoof2015 corpus. The experimental results
show that our proposals clearly outperforms other methods re-
cently proposed such as the popular CQCC+GMM system or
other similar deep feature systems for both seen and unseen
noisy conditions.

Index Terms: Spoofing detection, noise robustness, speaker
verification, deep learning, missing-data masks.

1. Introduction

In recent years, automatic speaker verification (ASV) [1, 2, 3]
technology has gained an increased interest due to its commer-
cial applications. As the importance of this technology grows,
so does the concerns about its security. In ASV, an impostor
could gain unauthorized access to a system by using spoofing
attacks [4]. For ASYV, four types of spoofing attacks have been
identified [5]: (i) replay (i.e. using pre-recorded voice of the tar-
get user), (ii) impersonation (i.e. mimicking the voice of the tar-
get voice), and also either (iii) text-to-speech synthesis (TTS) or
(iv) voice conversion (VC) systems to generate artificial speech
resembling the voice of a legitimate user. In this work, we are
interested in providing anti-spoofing measures against spoofing
attacks based on either VC or TTS.

As shown in [5], state-of-the-art ASV systems are highly
vulnerable to TTS/VC based spoofing attacks. Thus, the devel-
opment of anti-spoofing techniques is a subject that has recently
attracted the attention of a number of researchers [4, 5]. Broadly
speaking, these techniques attempt to identify synthetic speech
by detecting the artifacts produced by the speech vocoders
used in TTS/VC systems. For instance, a popular approach
attempts to detect the phase artifacts introduced by minimum-
phase vocoders [8]. Although these countermeasures have been
successfully applied in clean conditions, they are known to fail
when the attacks are deployed in noisy scenarios. As shown in
[10], the performance of the spoofing countermeasures trained

676

jgonzalez@lcc.uma.es

on clean conditions is significantly degraded in noisy scenar-
ios and this deterioration increases as the signal-to-noise ratio
(SNR) decreases. Thus, providing robust anti-spoofing tech-
niques against noisy conditions is also becoming a key issue.

The literature about ASV anti-spoofing in noisy conditions
is scarce due to the novelty of this area. One of the first studies
was carried out in [11], where the robustness of various front-
end features were evaluated under different noisy conditions. In
[10], a neural network was trained as an anti-spoofing detec-
tion system, and several front-end features were tested under
five additive noises and reverberant conditions. Also, the use of
frame-level deep features were proposed and evaluated in [12],
being justified as a mean to extract useful information for spoof-
ing detection from the noise corrupted spectral features. These
deep features were extracted using several neural network ar-
chitectures.

In this work, we propose a CNN+RNN system to get a
single spoofing identity representation per utterance, which
is robust to noisy and reverberant conditions.  Although
a CNN+RNN model was firstly proposed in [20] for anti-
spoofing, our proposed system presents four important differ-
ences: (1) it uses context windows to avoid applying a padding
or cropping method to the input of the system, (2) the CNN
and RNN are not optimized simultaneously, (3) it introduces
noise features for an increased noise robustness, and (4) the
CNN+RNN framework is not used as the final classifier. In
contrast to the DNN and CNN systems proposed in [12], our
spoofing identity representation is not obtained by averaging the
frame-level deep features of an utterance. Instead of that, we
propose a recurrent layer which is fed with the outputs of the
CNN in order to learn long-term dependencies. Furthermore,
we propose a novel methodology for noise awareness based on
the use of missing-data masks [6, 7], which define the reliability
of the spectro-temporal regions in the noisy spectrum.

This paper is organized as follows. Section 2 describes
the proposed (CNN+RNN) deep feature extractor and the LDA
back-end employed along the work. Then, in Section 3, we
outline the speech corpora, the network training, and the per-
formance evaluation details. Section 4 discusses the results of
our system under clean and noisy scenarios, and shows a com-
parison with other relevant anti-spoofing systems. Finally, we
present the conclusions derived from this research in Section 5.

2. System description

This section is devoted to the description of the proposed anti-
spoofing feature extraction procedure. First, Section 2.1 de-
scribes the different front-end stages: input spectral feature ex-
traction, frame-level CNN deep feature extraction, and RNN
(utterance-level) identity feature extraction. The linear discrim-
inant analysis (LDA) classifier employed as back-end is detailed
in Section 2.2. A block diagram of the proposed feature extrac-
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Figure 1: Deep learning framework to extract a spoofing iden-
tity representation per utterance (N represents the number of
context windows per utterance).

tion system is shown in Fig. 1. All deep models are imple-
mented with the Tensorflow toolkit [14].

2.1. Front-end

The proposed CNN+RNN front-end system provides a single
spoofing identity representation of the whole utterance as shown
in Fig. 1. The frame window size is 25 ms with 10 ms of
frame shift. A context window of 31 frames (centered at the
frame being processed) is used to obtain the input signal spectral
features which are fed into the system. Then, the CNN provides
a deep feature vector per window, and all deep features vectors
of the considered utterance are processed by the RNN in order
to obtain the spoofing identity vector of the utterance.

As demonstrated in [12], traditional log MEL filterbank fea-
tures (FBANK) are more robust to noise than the recently pro-
posed constant Q cepstral coefficients (CQCCs) [16]. Thus, we
have also adopted FBANK features. In contrast to [12] and [15],
we use a 48-dim static FBANK without delta and acceleration
coefficients, as we have realized that the context window of 31
frames is already exploiting the correlations between succes-
sive frames. Therefore, a higher spectral resolution is achieved
while the size of the spectral feature vector is smaller than in
[12]. The result of this processing block is a feature matrix of
size [48 x 31] per frame. The FBANK features are obtained
using the HTK toolkit [18]. Mean and variance normalization
is applied to the resulting FBANK parameters.

In our architecture, the CNN plays the role of a frame-level
deep feature extractor providing one feature vector for each con-
text window of 31 frames. In order to do this, the CNN acts as a
classifier whose task consists of determining whether the input
features are either genuine or belong to one of the 5 spoofing
attacks (S1, S2, S3, S4 or S5) present in the training set. Our
CNN uses 2 convolutional and pooling layers as feature extrac-
tors, followed by 2 fully connected layers of 1024 sigmoid neu-
rons with a softmax layer of 6 neurons as classification layer.
To prevent the problem of overfitting, 50 % and 40 % dropout
is applied to the 2 fully connected layers, respectively.

The first convolutional layer obtains 64 feature maps using
9x 9 filters. This results in a volume of size [64 x48 x31]. Then,
the pooling layer performs a downsampling operation along the
spatial dimensions (width=31, height=48) using 3 x 3 filters,
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resulting in a smaller volume of [64 x 6 x 10]. The second con-
volutional layer obtains 128 features using 4 x 4 filters, which
results in a volume of [128 x 16 x 10]. After that, a second
pooling layer with 3 x 3 filters reduces the final volume to
[128 x 5 x 3]. In the two pooling layers, we use a stride of
3 and a VALID padding. Finally, the 128 features of size [5 X 3]
are concatenated to make up a deep feature vector of 1920 com-
ponents.

As shown in Fig. 1, the deep features obtained from CNN
are fed into an RNN, which computes the anti-spoofing iden-
tity vector for the utterance. The advantage of using an RNN is
its ability for learning the long-term dependencies of the subse-
quent deep feature vectors. The activation function of the RNN
is a gated recurrent unit (GRU) [19]. Finally, a fully connected
layer containing 6 neurons (one per class: genuine, S1, S2, S3,
S4 and S5) is connected to the output of the last time step, fol-
lowed by a softmax layer. The state of the last time step rep-
resents the single deep identity spoofing vector of the whole
utterance.

In addition to multi-condition training, in this work we eval-
uate two types of noise features aimed at improving the robust-
ness against noise of our anti-spoofing detection methods. First,
noise-aware training (NAT) is implemented by using a noise
code per utterance, which is computed by averaging the 48 spec-
tral features of the first 10 frames of the utterance. Second, in
order to have a more finer grain detail about the reliability of
each spectro-temporal region of the noisy utterance, we propose
the use of soft masks [6, 7]. Each mask defines, for each spec-
tral feature, the probability that this feature is contaminated by
noise. To compute the mask, noise is firstly estimated for each
frame by linearly interpolating two independent noise estimates
computed by averaging the first and last N = 10 frames of each
utterance. Next, the SNR is estimated from the original noisy
features and the noise estimates. A sigmoid function is finally
applied to the SNR values to compress them between the [0, 1]
range in order to obtain the missing-data masks. In both cases
(NAT and missing-data masks), the noise features are appended
to the output of the convolutional layers of the CNN, which re-
sults in deep features of 1968 components as shown in Fig. 1.
Finally, this augmented deep feature vector is fed into the RNN.

2.2. Back-end

As shown in [15], a linear discriminant analysis (LDA) back-
end achieves the best performance for anti-spoofing in compari-
son with other state-of-the-art techniques. In general, LDA clas-
sification has shown a high performance for a variety of tasks
[21, 22]. Thus, we will employ an LDA back-end to assign a
genuine speech confidence score to each utterance. Our LDA
classifier uses 6 classes which represent genuine speech and the
five known spoofing attacks considered in the training set. The
genuine class score is the only used for decision.

3. Experimental framework

In order to evaluate the performance of our proposed tech-
niques, the ASVspoof 2015 corpus [9], a well-known database
containing data from different spoofing attacks under clean con-
ditions, was employed. Also, a noisy version of this corpus
[10] was also considered to evaluate the robustness of the dif-
ferent proposals against noise. Details about the methodology
followed for training and testing are given in this section.



3.1. Speech corpus

The clean ASVspoof 2015 corpus [9] defines three datasets
(training, development and evaluation), each one containing a
mix of genuine and spoofed speech. Spoofing attacks were gen-
erated either by TTS or VC. A total of 10 types of spoofing at-
tacks (S1 to S10) are defined: three of them are implemented
using speech synthesis (S3, S4 and S10), and the remaining
seven ones (S1, S2, S5, S6, S7, S8 and S9) using different voice
conversion systems. Attacks S1 to S5 are referred to as known
attacks, since the training and development sets contain data for
these types of attacks, while attacks S6 to S10 are referred to
as unknown attacks, because they only appear in the evaluation
set. More details about this corpus can be found in [9].

In order to evaluate the robustness of our proposals against
noise, the noisy version of the ASVspoof 2015 corpus (de-
scribed in [10]) was also employed. This version was generated
by artificially distorting the signals in the original, clean corpus
with different noise types at various signal-to-noise ratio (SNR)
levels. In particular, 5 additive noise types (white noise, bab-
ble, volvo, street and café) were added to the clean signals at
three SNR levels (20, 10 and O dB). Three reverberant scenar-
ios were also considered by convolving the clean signals with
three room impulse responses (RIR) with different T60 values
(0.3, 0.6 and 0.9s). Thus, in total, 18 different noisy conditions
(15 additive noises and 3 reverberant conditions) were finally
considered. As suggested in [12], data in the noisy corpus was
divided into seen and unseen conditions for further realism. The
seen condition consists of white, babble and street noises, and
the 3 reverberant conditions, which are present in the training,
development and evaluation datasets. On the other hand, the un-
seen condition contains café and volvo noises, which are only
present in the development sets. More details about this corpus
are given in [10, 12].

3.2. Training

As mentioned in the previous section (front-end description),
FBANK spectral features, extracted from a 48-filter Mel-
filterbank, are used to represent the speech signal. These fea-
tures were normalized in mean and variance.

In the clean scenario, the original ASVspoof 2015 corpus
[9] is used for training and evaluation. Here, our anti-spoofing
system does not append any noise features at the output of the
convolutional layers.

In the noisy scenario, the noisy version of the ASVspoof
2015 corpus [10] is used. Here, multi-condition training is ap-
plied in order to get higher level features that are more robust
against noise. Furthermore, noise features are appended to the
output of the convolutional layers in order to increase this ro-
bustness. We have tested two types of noise features: (1) noise
aware training (NAT), and (2) soft noise masks (MASK). This
augmented feature vector is fed into both the upper layers of the
CNN and the RNN.

In both scenarios, the separately CNN and RNN are trained
using Adam optimizer [23]. Also, early stopping is applied in
order to stop the training process when no improvement is ob-
tained after ten iterations.

3.3. Performance evaluation

The equal error rate (EER) is used to evaluate the system per-
formance. As described in the ASVspoof 2015 challenge eval-
uation plan [9], the EER was computed independently for each
spoofing algorithm and then the average EER across all attacks
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was used. To compute the average EER, we used the Bosaris
toolkit [13].

4. Results

The results by our proposal and other techniques from the liter-
ature are presented below.

4.1. Clean scenario

Table 1 shows a comparison of the performance of different
anti-spoofing systems in the clean version of ASVspoof 2015
database. The FBANK+CNN+LDA system has already been
proposed in [12], but as its performance is not provided in
this reference for the clean scenario, we have evaluated in-
stead our proposed system removing the RNN and averaging
the deep features for getting the identity spoofing vector of
the utterance as in [12]. The CQCC+GMM system achieves
the best average performance, although our proposed system
(FBANK+CNN+RNN+LDA) achieves the best results for the
known attacks. Compared to the rest of deep learning systems
(Spectro+CNN+RNN [20], Best DNN [15], Best RNN [15] and
FBANK+CNN+LDA), our proposal outperforms all of them in
the known and unknown attacks. Particularly noteworthy is the
result of our system in the S10 attack. The CFCC-IF system
[17] achieves a lower EER in the S10 attack than our proposed
system, but our proposal performs 0.21 % better on average
when considering all the attacks.

4.2. Noisy scenario

Table 2 compares the performance of five different systems
on the noisy version of the ASVspoof 2015 database. Multi-
condition training was used in all cases. In the table, the per-
formance of NAT and MASK techniques for noise awareness
is also evaluated. The last four systems use FBANK as input
features and an LDA as final classifier. For the sake of clarity,
these two acronyms have been removed.

As shown in Table 2, when multi-condition training is
used, our CNN+MASK+RNN system achieves the best over-
all performance in the clean condition, even outperforming
CQCC+GMM, which was the best system in Table 1. Further-
more, the use of the RNN decreases the total average EER from
1.09 % and 0.93 % to 0.59 % and 0.47 % when using NAT
and MASK techniques, respectively. This result shows the im-
portance of getting the identity spoofing representation of an
utterance using a recurrent layer to learn the long-term depen-
dencies, instead of averaging the deep features as in [12].

When evaluated under noisy conditions, the CQCC+GMM
system performs very poorly even for the seen noises (those
used for multi-condition training). On the contrary, our
CNN+MASK+RNN system achieves the best results with
an overall relative improvement of 26.6 % compared to
CQCC+GMM. Moreover, the use of the proposed MASK noise
features provides the best robustness against noise outperform-
ing NAT in both models (CNN and CNN+RNN). Specifically,
it reduces a 0.6% and 0.3% the total average EER, respectively.

The CQCC+GMM performs again very poorly in the un-
seen noise conditions when compared to our proposals. As
in the seen noisy conditions, the MASK noise feature obtains
significantly better results than NAT and so does the hybrid
CNN-+RNN model in comparison with the CNN model.

To sum up, the results under noisy conditions show that our
two proposals (RNN for utterance-level identity representation
and MASK noise awareness) significantly improve the perfor-



Table 1: Comparison on evaluation clean dataset for each spoofing attack in terms of (%) EER

System Known Attacks Unknown Attacks Total
S1 S2 S3 S4 S5  Avg. | S6 S7 S8 S9 S10  Avg. | Avg.
CQCC + GMM [16] 0.00 0.10 0.00 0.00 0.13 0.05 010 0.06 1.03 0.05 1.07 046 | 0.26
Spectro + CNN + RNN [20] 0.16 0.50 0.03 0.03 138 040 |0.85 091 0.03 0.59 1427 333 | 1.86
Best DNN [15] 0.00 0.10 0.00 0.00 0.20 0.10 [ 0.20 0.00 0.00 0.00 255 5.10 | 2.60
Best RNN [15] 0.00 090 0.00 0.00 030 0.20 | 0.80 0.50 0.00 0.70 10.70 2.50 | 1.40
CFCC-IF [17] 0.10 0.86 0.00 0.00 1.08 041 |[0.85 0.24 0.14 035 849 2.01 | 1.21
FBANK + CNN + LDA 0.02 1.07 0.00 0.00 0.51 0.32|1.03 044 0.05 0.51 2057 452|242
FBANK + CNN + RNN + LDA | 0.00 0.08 0.00 0.00 0.07 0.03 | 0.22 0.10 0.08 0.13 934 197 | 1.00
Table 2: Comparison on evaluation noisy dataset in terms of average (%) EER using multi-condition training
CQCC + GMM CNN + NAT CNN + MASK CNN + NAT CNN + MASK
Eval. Condition [12] + RNN + RNN
Kn. Un. Avg. | Kn. Un. Avg. | Kn. Un. Avg. | Kn. Un. Avg. | Kn. Un. Avg.
clean 0.10 090 0.50|0.14 203 1.09 (012 174 093 | 0.04 1.13 0.59 | 0.03 0.90 047
white_snr_20 468 446 457 |17 43 30 |14 39 27 |11 29 20|08 25 17
white_snr_10 489 481 485 |32 51 44 |27 46 37 |21 37 29 |23 34 29
white_snr_0 493 489 49.1 (79 100 90 | 72 93 83 | 69 9.1 80 | 59 86 73
babble_snr_20 182 183 183 | 3.1 46 39 |29 41 35 (25 37 31|23 39 31
babble_snr_10 339 336 338 |57 67 62 |52 59 56 |41 48 45 |37 45 41
babble_snr_0 446 440 443 (129 147 13.8 |12.1 13.6 129 |10.1 11.7 109 | 9.5 10.6 10.1
street_snr_20 2277 223 225|139 51 45 |27 42 35 (21 35 28 |19 31 25
street_snr_10 375 363 36961 75 68 |51 67 59 |46 57 52 |41 54 48
street_snr_0 46.1 454 458 | 11.1 137 124|101 124 113 | 9.1 108 100 | 87 99 93
reverberation_0.3 84 93 89 | 1.3 21 1.7 (1.5 22 19 |12 18 15|11 19 15
reverberation 0.6 | 106 7.8 92 |16 20 18 | 1.5 2.1 1.8 |14 17 16 | 1.6 15 1.6
reverberation_0.9 76 69 73 1.5 19 1.7 14 1.7 1.6 12 15 14 [ 11 16 14
Avg. Seen Noise | 31.2 305 308 | 50 65 58 |45 59 52|39 51 45 |36 47 42
cafe_snr_20 30.7 30.1 304 | 29 53 41 |27 54 41 1.9 47 33 | 1.8 45 32
cafe_snr_10 42.1 413 417 |56 81 69 |53 78 66 |47 61 54 |45 57 51
cafe_snr_0 498 47.1 473 | 135 200 16.8 | 124 18.7 156 | 10.7 154 13.1 | 101 143 122
volvo_snr_20 09 27 18 |10 37 24 |09 34 22|07 31 1.9 | 0.8 30 19
volvo_snr_10 43 56 49 |24 49 37 |21 45 33 |17 36 27 |15 34 25
volvo_snr_0 13.0 13.0 13.0| 3.7 50 44 | 34 47 4.1 31 37 34 |27 35 31
Avg. Unseen Noise | 23.1 233 232 |49 78 64 |45 74 60 | 3.8 6.1 50 | 3.6 57 4.7

mance in both seen and unseen noisy conditions with respect the
two reference techniques (CQCC+GMM, CNN+NAT). It must
be taken into account that although CNN+NAT is the best iso-
lated deep feature extraction proposed in [12], this reference
also proposes a combination of DNN, CNN, RNN and NAT
for frame-level feature extraction that outperforms CNN+NAT.
However, this combination is not directly comparable with our
CNN+MASK+RNN since it is a fusion of techniques unlike
our proposal. Despite this, it is worth mentioning that this
combination can only outperform our best proposal in the case
of seen noises but not in the case of the unseen ones. Fi-
nally, it is worth noticing that, although the CQCC+GMM sys-
tem has been proved to get the best state-of-the-art results us-
ing the clean ASVspoof 2015 database, our FBANK+CNN+
MASK+RNN+LDA system gets a better performance in the
clean evaluation dataset when using multi-condition training.

5. Conclusions

This paper has proposed a novel technique for the extraction
of deep identity features for an efficient detection of spoof-
ing attacks in clean and noisy environments. In our sys-
tem, a CNN+RNN hybrid architecture is employed to embed
the utterances as a single vector, providing information about
whether the utterance is genuine or spoofed. Furthermore, to
increase the noise robustness of our anti-spoofing detector, a

soft missing-data mask technique has been proposed.

Our system has been evaluated on the ASVspoof 2015 clean
corpus and on a distorted version of the same corpus, includ-
ing both additive noise and reverberation. The experimen-
tal results have shown that our best proposal outperforms the
CQCC+GMM system (baseline of the ASVspoof 2017 chal-
lenge [24]) and the best isolated deep feature extractor proposed
in [12] (CNN+NAT) for both seen and unseen distorted condi-
tions, respectively.

In the future, we plan to integrate other noise mask estima-
tion techniques in the deep feature extraction procedure in order
to obtain further improvements in noisy conditions. Also, we
will investigate the incorporation of phase-based features that
could complete the signal information lost by the FBANK fea-
tures.
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