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Abstract

This paper presents a novel Bag-of-Visual-Words (BoVW)
approach, to represent the grayscale spectrograms of acous-
tic events. Such, BoVW representations are referred as his-
tograms of visual features, used for Acoustic Event Classifi-
cation (AEC). Further, Chi-square distance between histograms
of visual features evaluated, which generates kernel to Support
Vector Machines (Chi-square SVM) classifier. Evaluation of the
proposed histograms of visual features together with Chi-square
SVM classifier is conducted on different categories of acous-
tic events from UPC-TALP corpora in clean and different noise
conditions. Results show that proposed approach is more robust
to noise and achieves improved recognition accuracy compared
to other methods.
Index Terms: Acoustic Event Classification (AEC), Bag-of-
Visual-Words (BoVW), Chi-square kernel SVM, histograms of
visual features

1. Introduction
Acoustic Event Classification (AEC) is the process of recog-
nition of semantic label of an audio clip, which represents
the specific sound in an environment. It has many emerging
applications, such as machine hearing [1], human activity
recognition [2], audio-based surveillance [3] and so on. Study
on AEC is still in its infancy as compared to speech/speaker
recognition tasks. However, a recent learning approach
called Bag-of-Audio-Words (BoAW), inspired by well known
Bag-of-Words (BoW) representation of text documents, used
for AEC [4]. BoAW approach generates ’audio words (aural
words)’ from Low-Level Descriptors (LLDs) such as frame-
wise Mel-frequency cepstral coefficients (MFCCs), spectral
and temporal features using clustering algorithm. The vector
quantizing the LLDs to generate histograms called as BoAW
used as feature vectors to the classifier. Recently, BoAW
approach even outperforms emerging Deep Neural Networks
(DNNs) [5]. However, real-time acoustic events overlapped
with high background noise, conventional LLDs are sensitive
to noise and may not be suitable for AEC, especially in noisy
conditions. In [6], image features such as the combined
Histogram of Oriented Gradient (HOG) and Local Binary
Pattern (LBP) descriptors from the spectrogram image are
represented as BoAW. HOG and LBP features extract edge and
texture information from the digital image [7] and may not be
suitable for AEC.

In this paper, we use BoVW approach for AEC, widely
used for object recognition in computer vision [8]. Only the
difference between BoVW and BoAW is that the input feature
descriptors. Unlike LLDs as BoAW, Scale Invariant Feature
Transform (SIFT) descriptors are commonly represented as
BoVW [9]. However, SIFT descriptors effectively recognize
objects appear at the different scale, location and poses.

Acoustic event in the spectrogram is free from such variations,
except variation along time. Hence, SIFT descriptors may not
be suitable for AEC. In this work, intensity values of grayscale
spectrogram itself considered as feature descriptors (grayscale
descriptors) to represent as BoVW and Chi-square kernel SVM
used as the classifier. Representation of intensity values of
grayscale spectrograms as BoVW omits the feature (descriptor)
extraction step and effectively characterizes the acoustic event
spectrograms. Robustness of the grayscale descriptors is tested
in different noisy conditions.

The rest of the paper is structured as follows, Section 2 ex-
plains the proposed BoVW approach in brief. Section 3 ex-
plains the experiments carried out in this work. Results are dis-
cussed in section 4. The conclusion is given in section 5.

2. BoVW Representations

Overview of the proposed approach given in Figure 1. Initially,
the grayscale spectrogram is generated from the acoustic event.
Visual words are generated from the grayscale spectrogram us-
ing k-means clustering. Finally, rows of spectrograms are quan-
tized to get BoVW as the feature vectors to SVM.

2.1. Gray-scale spectrogram image generation

A spectrogram of an acoustic event is generated using Short-
Time Fourier Transform (STFT) [10]. The STFT of an acoustic
event is evaluated using Hamming window of length 256 sam-
ples with 50% overlap and 44100 Hz sampling rate, which gives
the spectrum of complex values (frequencies), have real and
imaginary parts. The magnitude of STFT yields linear spec-
trogram S(f, t); where f is frequency bin (total 129 frequency
bins) and t is the time frame. A grayscale intensity spectrogram
image is generated (see grayscale spectrogram in Figure 1b) by
normalizing the values of Time-Frequency matrix S(f, t) be-
tween [0, 1] as given in (1).

GI(f, t) =
S(f, t)−min(S)

max(S)−min(S)
(1)

Acoustic events are highly variant to time, which may cause
dimensional variations. Hence, grayscale spectrogram im-
age GI(f, t) is transposed as given in (2) to get fixed 129-
dimensional row vectors (transposed grayscale spectrogram is
shown in Figure 1c).

G(t, f) = GI(f, t)T (2)

Unlike 128-dimensional SIFT descriptor from each image patch
in the image processing, here, each row of G(t, f) is consid-
ered as a 129-dimensional feature vector of intensity values for
BoVW representations.
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Figure 1: Overview of proposed approach. Acoustic events (a) are converted into a grayscale spectrogram images (b). Transposed
grayscale spectrograms (c). The visual codebook is generated from intensity values of few training grayscale spectrograms using k-
means clustering (d). Assigning rows (It) of intensity values of spectrogram to the nearest visual word (vwk) in codebook (e) and (f).
Histogram of number of occurrences of each word in spectrogram image is considered as feature vector to SVM for recognition (g).

2.2. BoVW representations of gray-scale spectrograms

Here, we represent grayscale spectrogram as BoVW. Five
randomly selected grayscale spectrograms per class (small
training partition) are clustered into a fixed number of clusters
using the k-means clustering algorithm [11], which returns
the cluster centers, each of which referred as a visual word
(codeword). It is worth to point out that five grayscale spec-
trograms per class are efficient enough to build discriminative
visual words with less computational time. All visual words
together constitute a codebook or visual vocabulary (shown in
Figure 1d). There is no general best practice to select the size
of the visual vocabulary, i.e., the number of visual words. In
this work, the size of the visual vocabulary ranging from 500 to
2000 considered and its impact on the final AEC accuracy is
analyzed.

Once the visual vocabulary is generated, each row of
G(t, f) is quantized, i.e., assigned to the closest visual word in
the vocabulary using Euclidean distance as shown in Figure 1e
and 1f. At this point, a two-dimensional grayscale spectrogram
G(t, f) is replaced by a one-dimensional vector V of indices.
Each index in V represents the nearest visual word to the
corresponding row vector of G(t, f).

Finally, a bag or histogram of visual words is generated
from V (see histogram in 1g), which represents the count of
occurrence of each visual word in the grayscale spectrogram
G(t, f). As we discussed, spectrograms of acoustic events are
variant to time. Longer acoustic events generate overall higher
histogram counts. Therefore, this time-varying nature of the
acoustic event is eliminated by L1 histogram normalization. At
this stage, a time-invariant histogram of the grayscale spectro-
gram image is considered as the feature vector to the classifier.

2.3. Classifier

Here, we use histograms of visual features to train SVM clas-
sifier. Linear kernel SVM is simple and has low computational
cost; hence, it is more popular. However, linear SVM not con-
siders the nature of input features. SVM can also perform non-
linear classification using kernel trick. In this work, we com-
puted Chi-square distance kernel using input features (normal-
ized histograms) for SVM. Chi-square distance between any
two normalized histograms h1 and h2 is given in (3).

χ2(h1, h2) =
1

2

M∑

i=1

(h1i − h2i)
2

h1i + h2i
(3)

Where M is the number of histogram bins, i.e., number of vi-
sual words. The Chi-square distance of histograms is computed
using (3) in a pairwise manner and then, it is converted into the
kernel using (4) for SVM classification.

Kχ2(h1, h2) = e−αχ
2(h1,h2) (4)

Where α is a constant scaling factor, which is computed as the
mean of Chi-square distance between all training histograms.
It is worth to note that, lower the Chi-square distance higher
the match between histograms. In addition, we compare the
recognition performance of Chi-square kernel with linear and
histogram intersection kernel [4], for AEC.

3. Experiments
3.1. Acoustic event corpora

Performance of the proposed approach evaluated on UPC-
TALP corpora [12]. A 12 different isolated meeting room
acoustic events, namely, applause, chair moving, cough, door
knock, door slam, keyboard typing, key jingle, laugh, paper
wrapping, phone ring, spoon cup jingle and steps are selected
for AEC. Approximately 60 acoustic events per class, recorded
using 84 microphones: an array of 64 Mark III microphones, 12

3320



Baseline Pancoast Foggia BoVW
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Linear Intersection Chi-square

Figure 2: Average recognition accuracy of proposed BoVW ap-
proach versus other methods using linear, intersection and Chi-
square kernels SVM

Table 1: Comparison of overall Recognition accuracy (%) of
proposed BoVW approach with other methods using Chi-square
SVM at clean and different SNR.

Method Ref. Clean 20dB 10dB 0dB Average

Baseline - 83. 76 80.01 71.71 51.67 71.78
Pancoast et al. [4] 88.97 86.88 80.42 57.30 78.39
Foggia et al. [13] 88.34 85.42 76.46 62.09 78.07

BoVW - 93.54 92.51 88.76 79.54 88.58

T-shape clusters microphones, 8 table top and omni-directional
microphones. In this work, only the third channel of Mark III ar-
ray is considered for evaluation. Acoustic events are trimmed to
the length of given annotations and resulting data is divided into
five disjoint folds to perform five-fold cross-validation. Each
fold has the equal number of acoustic events per class.
To compare the robustness of the proposed approach, ’speech
babble’ noise from NOISEX’92 database is added to the acous-
tic events at 20, 10 and 0dB SNR. Most of the energy of ’speech
babble’ is distributed at lower frequencies. All acoustic events
are processed at 44100 Hz sampling rate.

3.2. Performance comparison

In first set of experiments, performance of the proposed ap-
proach is compared with the following baseline system and the
state-of-the-art bag of features for AEC.

1. Baseline system : Mean and standard deviation of 13
MFCCs and their first and second-order derivatives are
taken over each frame, resulting in 39 × 2 dimensional
feature vector. Further, features are normalized to zero
mean and unit variance.

2. Pancoast et. al [4] consider 12 MFCCs and their first and
second order derivatives with their log energies are eval-
uated over each frame, resulting 39-dimensional feature
vector represented as Bag-of-Audio-Words (BoAW).

3. Foggia et. al [13] use spectral, temporal, energy (in short
refereed as STE) features as a BoAW (aural words) to
detect acoustic events in noisy environments.

The MFCCs and STE features used in our experiments are ex-
tracted using 20ms hamming window with 50% overlap. Re-
sults of all the methods are reported using linear, intersection

(a) (b)

Figure 3: Acoustic event cup jingle. (a) Grayscale spectrogram
at clean condition; (b) grayscale spectrogram at 0dB SNR.

and Chi-square kernel SVM. Five-fold cross-validation is per-
formed to select optimal parameters of SVM.

Further, performance of proposed BoVW approach is also
compared with the Spectrogram Image Features (SIFs) for
AEC, which are formed by concatenating second and third or-
der moments over 9 × 9 blocks of monochrome spectrogram
images [14].

4. Results and Discussion
4.1. Proposed BoVW approach versus baseline and BoAW
approaches

A summary of experimental results is shown in Figure 2.
Detailed results at different SNR conditions are given in
Table 1. The results (from Figure 2) show that the proposed
Chi-square SVM for AEC slightly outperforms the Intersection
and reasonably outperforms Linear SVM in all the methods.
Chi-square and intersection kernels SVM learn from nature of
input features and achieves high recognition rate, unlike linear
SVM. Chi-square and intersection kernels SVM commonly
used to learn from histogram features in computer vision.
Surprisingly, Chi-square SVM with non-histogram MFCC
features outperforms linear and intersection kernels. Therefore,
hereafter, we consider Chi-square SVM as a competitive
classifier in this work. Proposed BoVW with Chi-square SVM
outperforms all the methods in clean and all noise conditions
(see Table 1). As we discussed, the energy of speech babble
concentrated at lower frequencies. MFCC features are sensitive
to lower frequencies and noise; hence, the recognition accuracy
of the baseline system significantly reduces at 0dB SNR. Noise
sensitive MFCC and STE feature used in [4] and [13] as BoAW
performs better than frame-average based baseline. However,
it is still worse than proposed approach. At this point, we
also concatenated MFCC and STE features of [4] and [13]
and then represented as BoAW to build competitive method.
However, it further reduces the recognition results; hence, it is
not considered.

The magnitude of the spectral components of the acoustic
event in the linear spectrogram S(f, t) is much higher than
that of the noise. Same reflected in grayscale spectrogram
as the intensity values of acoustic events are much higher
compared to noise. However, noise is commonly more diffuse
than acoustic events and maximum energy spread over lower
regions of spectrogram image. Strong peaks of acoustic events
are unaffected by the noise (see Figure 3), which are effectively
discriminate by BoVW from noise.
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Figure 4: Recognition accuracy versus size of vocabulary (num-
ber of visual words).

Table 2: Comparison of overall Recognition accuracy (%) of
proposed BoVW approach with SIFs using Chi-square SVM at
clean and different SNR.

Method Ref. Clean 20dB 10dB 0dB Average

SIFs [14] 76.67 75.84 70.17 56.84 69.88
BoVW - 93.54 92.51 88.76 79.54 88.58

Audio words are in the vocabulary are from the low-level
speech features which are sensitive to noise. This reduces the
significance BoAW model at noisy conditions and achieves
poor performance. Grayscale spectrogram image effectively
localizes the strongest peaks of acoustic events at 0dB SNR.
Hence, visual words of acoustic events are more robust than
audio words in noisy conditions. Results show that visual
words outperform audio words even at clean conditions.

4.2. Size of vocabulary

The recognition accuracy of Chi-square SVM concerning vo-
cabulary size at the clean condition is shown in Figure 4. It is
observed that unlike object recognition in computer vision, the
recognition accuracy does not improve as the size of vocabulary
increases. Acoustic events are brief and present in the sparse
frequency spectrum. Hence, acoustic events can be represented
using limited visual words. The 500 visual words effectively
recognize the acoustic events with higher recognition rate.

4.3. Proposed BoVW approach versus SIFs

Proposed BoVW approach fully captures the spatial informa-
tion of intensities of the grayscale spectrogram by considering
entire grayscale spectrogram as the feature descriptors. SIFs
from two central moments over each image blocks lead to loss
of important information. Hence SIFs are outperformed by the
BoVW approach in all conditions (see Table 2 for comparison).

5. Conclusions
In this paper, novel BoVW and Chi-square SVM are proposed
for AEC. BoVW from grayscale descriptors (rows of trans-
posed grayscale spectrogram) discriminate the strongest peaks
of acoustic events from the noise and achieve the high recog-
nition rate compared to all other methods. The results show
that BoVW approach achieves 93.54% recognition accuracy in
clean condition, it indicates that BoVW approach has the signif-
icant contribution towards characterization of acoustic events.

BoVW are robust to noise and achieve 79.54% accuracy at 0dB
SNR. In future, concatenation of other image-specific features
to grayscale descriptors may further improve recognition accu-
racy.

6. References
[1] R. F. Lyon, “Machine hearing: An emerging field [exploratory

DSP],” IEEE Signal Processing Magazine, vol. 27, no. 5, pp. 131–
139, 2010.

[2] J. A. Stork, L. Spinello, J. Silva, and K. O. Arras, “Audio-based
human activity recognition using non-Markovian ensemble vot-
ing,” in 21st IEEE International Symposium on Robot and Human
Interactive Communication. IEEE, 2012, pp. 509–514.

[3] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento,
“Audio surveillance of roads: a system for detecting anomalous
sounds,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 17, no. 1, pp. 279–288, 2016.

[4] S. Pancoast and M. Akbacak, “Bag-of-audio-words approach for
multimedia event classification,” in Thirteenth Annual Conference
of the International Speech Communication Association, 2012.

[5] M. Schmitt, F. Ringeval, and B. W. Schuller, “At the border of
acoustics and linguistics: Bag-of-audio-words for the recognition
of emotions in speech.” in INTERSPEECH, 2016, pp. 495–499.

[6] H. Lim, M. J. Kim, and H. Kim, “Robust sound event classifi-
cation using LBP-HOG based bag-of-audio-words feature repre-
sentation,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[7] X. Wang, T. X. Han, and S. Yan, “An hog-lbp human detector with
partial occlusion handling,” in Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 2009, pp. 32–39.

[8] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, “Evalu-
ating bag-of-visual-words representations in scene classification,”
in Proceedings of the international workshop on multimedia in-
formation retrieval. ACM, 2007, pp. 197–206.

[9] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2,
pp. 91–110, 2004.

[10] A. V. Oppenheim, “Speech spectrograms using the Fast Fourier
Transform,” IEEE spectrum, vol. 8, no. 7, pp. 57–62, 1970.

[11] L. Wang, L. Bo, and L. Jiao, “A modified k-means clustering with
a density-sensitive distance metric,” in International Conference
on Rough Sets and Knowledge Technology. Springer, 2006, pp.
544–551.

[12] A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu, and
M. Omologo, “Clear evaluation of acoustic event detection and
classification systems,” in International Evaluation Workshop on
Classification of Events, Activities and Relationships. Springer,
2006, pp. 311–322.

[13] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento,
“Reliable detection of audio events in highly noisy environments,”
Pattern Recognition Letters, vol. 65, pp. 22–28, 2015.

[14] J. Dennis, H. D. Tran, and H. Li, “Spectrogram image feature
for sound event classification in mismatched conditions,” IEEE
Signal Processing Letters, vol. 18, no. 2, pp. 130–133, 2011.

3322


