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Abstract
The recent advent of deep learning techniques in speech tech-
nology and in particular in automatic speech recognition has
yielded substantial performance improvements. This suggests
that deep neural networks (DNNs) are able to capture structure
in speech data that older methods for acoustic modeling, such
as Gaussian Mixture Models and shallow neural networks fail
to uncover. In image recognition it is possible to link repre-
sentations on the first couple of layers in DNNs to structural
properties of images, and to representations on early layers in
the visual cortex. This raises the question whether it is possi-
ble to accomplish a similar feat with representations on DNN
layers when processing speech input. In this paper we present
three different experiments in which we attempt to untangle
how DNNs encode speech signals, and to relate these repre-
sentations to phonetic knowledge, with the aim to advance con-
ventional phonetic concepts and to choose the topology of a
DNNs more efficiently. Two experiments investigate represen-
tations formed by auto-encoders. A third experiment investi-
gates representations on convolutional layers that treat speech
spectrograms as if they were images. The results lay the basis
for future experiments with recursive networks.
Index Terms: deep neural networks, conventional knowledge,
information encoding, structure discovery

1. Introduction
The speech technology field is being revolutionized by the ap-
plication of deep learning techniques, in particular Deep Neural
Nets (DNNs). DNNs, in various forms, are now being applied
for many tasks in automatic speech processing. Their success
in terms of conventional performance measures suggests that
the parameters of a trained DNN reflect relevant structure in the
training data.

The question how information is ‘covered’ or ‘represented’
in a trained DNN is long-standing [1, 2, 3, 4, 5, 6], but it is
still not trivial to see whether and how a trained DNN can be
interpreted and how we might be able to learn from DNNs. The
ability to interpret trained DNNs might advance, and perhaps
revolutionize, our understanding of the phonetic or linguistic
structure of speech.

In recent studies, the question how information can be en-
coded in DNNs is addressed in different ways.

First, DNNs may discover structure in data sets because
subsequent layers ignore more and more details that are irrele-
vant for correctly predicting output labels [7, 8]. Increasingly
abstract representations emerge by cascading multiple (non-
linear) transformations [9]. Recent DNN classification results
show that this interpretation is most convincing in image clas-
sification tasks. The idea of each layer representing a more ab-
stract representation of the input can be interpreted in terms of
a mapping f from the input space X to an output space Y . If
this mapping can be decomposed as a cascade of sub-mappings,

e.g., Y = g(f(X)) (in which f() represents the mapping from
X to an unobservable (hidden, latent) space H , and g() a map-
ping fromH to Y ), this decomposition may directly be reflected
by a multilayer topology, and vice versa.

Alternatively, papers such as [10] focus on the role of DNNs
to find optimal representations, in particular in the sense of fea-
tures. They argue that learning of optimal representations can
be achieved if the network is able to disentangle the underlying
explanatory factors hidden in the observed data. This approach
may be especially interesting when the data emerge from the in-
teraction between many sources. However, as admitted in [10],
it is as yet unclear how meta-level knowledge about underly-
ing sources of variation can be brought to bear in designing
optimal training methods, and in interpreting trained networks.
The layer-idea and the representation approach come back in
the first experiment in this paper (see below).

A third, more geometrically inspired interpretation of the
input-output relation in a DNN is based on the manifold as-
sumption, which holds that data in the input space are all
mapped to the vicinity of a manifold M of typically a much
lower (functional) dimensionality embedded in a high dimen-
sional embedding space (e.g. [1, 11, 10]). The application of
manifold learning methods on speech signals [2] is motivated
by the argument that speech is produced by relatively slow bal-
listic movements of articulators. By modeling manifolds by
a monotonic chain of simpler spatial forms, [12] showed that
DNNs can represent data that lie on a low-dimensional mani-
fold with great accuracy, suggesting that deep networks provide
a very effective method for dimensionality reduction. To a first
approximation, directions tangent to the manifold are well pre-
served while directions orthogonal to the manifolds aren’t.
This idea comes back in the second and third experiment in this
paper.

A fourth approach is more theoretical and analyzes DNNs
on an ‘information plane’, by invoking the notion of the ‘in-
formation bottleneck’ [13]. Any DNN can be characterized by
the mutual information between a hidden layer and the input
and output variables, as a function of hidden layer depth. The
resulting mutual information values are related via a chain of
inequalities [13]. Tishby and colleagues [8] argue that the opti-
mal architecture (number of layers and features/connections at
each layer) is related to the bifurcation points of the informa-
tion bottleneck trade-off (i.e., the amount of compression from
the input layer to a hidden layer as a function of hidden layer
depth). The hierarchical representations then correspond to the
phase transitions related to these bifurcation points. In this vein,
even more abstract approaches are being investigated, e.g. [14].

1.1. Description of our experiments

We describe three interrelated experiments that aim at unrav-
eling the information captured in a trained DNN in different
ways. Following the reasoning in [15] and the approach in [13],
all DNNs are chosen to be relatively small: if it appears diffi-
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cult or impossible to unravel information from a DNN with a
limited number of layers, it will be an uphill battle to extract
information from larger networks. Our aim here, therefore, is
mainly to provide a proof of principle.

The first experiment employs a Convolutional Neural Net
(CNN) (cf. [16]) implemented in TensorFlow [17] and re-uses
the data and method described in the low-footprint keyword
spotting task [18]. It investigates the convolution matrices that
are constructed in the first hidden layer of the resulting CNN,
while varying the number of hidden units in the first and second
hidden layer.

The second experiment investigates the representation on
a bottleneck layer in a stacked autoencoder used on TIMIT,
and focuses on the distribution of the bottleneck representations
aligned with the TIMIT phone segmentation. The evolution of
the statistical distribution of the phone classes using bottleneck
representations is studied during learning.

The third experiment also applies stacked autoencoders on
TIMIT. Following ideas in [9, 13, 8], we investigate the com-
mon structure in bottleneck representations obtained in indepen-
dently trained auto-encoders with the same topology. As might
be expected, while the I/O relations of these networks are very
similar (with very high correlations between the resulting out-
puts for the same input), the internal bottleneck representations
are very different.

2. Terminology, notation
The DNNs that we consider are either CNNs or stacked autoen-
coders. The input and output space are denoted X and Y , re-
spectively. Hidden layers at depth i span the space denoted Hi

(or just H , when there is no confusion). If a bottleneck layer
H of an autoencoder has a dimension dim(H) < dim(X) =
dim(Y ), the encoder mapping E can be considered as a sub-
jective function from X onto H; the decoder mapping D is an
injective function from H to Y (D : H ↪→ Y). The image
D(H) ⊂ Y is a manifold embedded in Y with functional di-
mension at most dim(H).

3. Experiments
3.1. Convolutional matrices: the ears and noses

We re-used the DNN and the training data from [18]; the DNN
was implemented using Tensorflow [17]. Leaving aside all de-
tails here, the network consists of two convolutional layers, fol-
lowed by a fully connected layer which seeds into a softmax
output layer. The network is adapted from a visual classifica-
tion system, which explains why the input consists of fixed-
sized spectrograms (all training and test utterances must have a
duration of exactly 1 s). TensorFlow provides relatively easy ac-
cess to the trained convolution filters and to the representations
formed at the convolution layers given a test utterance. The di-
mensions of the convolution filters and the number of nodes in
the layers are parameters. We kept the dimensions of the filters
fixed, but varied the number of nodes in the layers, to investi-
gate whether increasing this number would expose increasingly
more detailed (and interpretable) spectro-temporal structures.
After CNN training, we selected the nh (2, 4, 8, 16, 32) con-
volution matrices of size 20 by 8 (time·freq), each associated to
each of the nh nodes in the first hidden layer. Each value of nh

thus generates a ‘generation’ of convolution matrices.
It might be expected that convolution matrices are not ran-

domly positioned, but instead that matrices in the ‘next’ gener-

Figure 1: The genealogy of convolution matrices on the first
hidden layer. The CNN used is from [18]. At the left, the two
convolution matrices are presented that result form a training
with 2 hidden nodes on the first hidden layer. The next column
contains the four convolution matrices resulting from a training
with four hidden nodes, etc.

ation (for nh) in some way ‘improve’ the matrices in the pre-
vious generation (for nh/2). Due to the dotprod operation in
the CNN, these matrices can be interpreted as weightings in the
spectro-temporal domain. By using the angle between the ma-
trices as between-matrix distance (i.e., a distance closely related
to the dotprod operation) it appears that the matrices obtained
for low nh (2, 4, 8, 16 and 32) can be arranged in a balanced hi-
erarchical structure: after linking each matrix in the next ‘gener-
ation’ to its closest parent matrix from the previous generation,
often each parent appears to link with exactly 2 matrices in the
next generation.

The corresponding specialization tree for nh = 2, 4, 8, 16
is depicted in fig. 1. At the left, the two convolution matrices are
shown in the case nh = 2. The next column contains the four
convolution matrices resulting from a training with nh = 4;
also the links to the closest ‘parent’ are depicted. Ramification
takes place from left to right (details omitted for the sake of clar-
ity). The resulting convolution matrices clearly show a time-
frequency structure, somewhat similar to the ‘ears and noses’
observed in the first hidden layer of the well-known face classi-
fication networks. The interaction between time and frequency
(similar to the Gabor patterns) can be interpreted as primitive
shape descriptions of spectral (formant) transitions, with simi-
larities to the results [6] that were obtained by combining speech
and image input data.

3.2. Dynamics in bottleneck representations

In the second experiment we focus on the phonetic represen-
tation on the bottleneck layer in a DNN trained on TIMIT.
Here we study how well vowels, semivowels, liquids, frica-
tives, nasals and plosives can be separated by computing the
Kullback-Leibler (KL) dissimilarity in the bottleneck represen-
tations related to each phone-pair, as a function of epoch. The
phone-phone KL measure was computed using gaussmixk.m
(VoiceBox, [19]), in which each class is first estimated using
a Gaussian mixture and next the KL dissimilarity between both
classes is estimated. Albeit an approximation, it provides an
adequate alternative for the (less tractable) analytical approach.

For the sake of feasibility, the DNN consisted of two
stacked autoencoders with hidden layers of size 8 and 5, respec-
tively. The resulting DNN has three hidden layers, with dimen-
sion 8, 5 (bottleneck), and 8, respectively. Each autoencoder
training was characterized by a L2 Weight Regularization equal
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Figure 2: This figure shows, for 7 broad phonetic classes
(BPCs), the improvement of the average KL dissimilarity within
a BPC, as function of training epoch. The KL dissimilarity is
computed on the basis of the DNN’s bottleneck representation.
For the sake of comparison, the top plot shows the KL dissim-
ilarity between very distinct BPCs (vowels and plosives), as
function of epoch. The bands around these plots show the vari-
ation around the averages, as observed across 16 independent
DNN optimization runs.

to 0.01, a Sparsity Regularization equal to 4, and a sparsity pro-
portion of 0.05. All encoder transfer functions were ‘logsig’
(f(x) = 1/(1 + exp(−x)), and the decoder transfer function
was ‘purelin’ (f(x) = x).

The input space X was chosen to be sequence of single-
MFCC vectors of dimension 13 (c0, . . . , c12), after mean sub-
traction per utterance. For each component, the variance was
kept. Since the DNNs used here are less deep than the Deep
belief networks used in other studies (e.g., [20]) we chose the
(already orthogonalized) MFCC representations rather than the
log energies per Mel-band.

Instead of displaying raw confusion matrices, we focus on
the average phone-phone KL dissimilarity within each of the
6 broad phonetic classes (BPC): vowels, semivowels, liquids,
fricatives, nasals and plosives. These averages, measured on
the basis of the bottleneck representation, are shown in Fig. 2
as a function of epoch (here, ‘epoch’ is a unit of 20 consecu-
tive DNN training iterations). For the sake of comparison, the
top plot shows the KL dissimilarity between very distinct BPCs
(vowels and plosives); this is near ceiling.

In order to study robustness, we performed the same train-
ing a number of times. The transparent bands show the varia-
tion around the averages, as obtained from 16 independent DNN
training runs with different optimization settings. The pattern-
ing suggests that the acoustic-phonetic information in the bot-
tleneck unfolds in the same way for DNNs sharing the same
topology.

The figure shows that the phones within each BPC get better
separable during training. Vowels and fricatives are best separa-
ble within their BPC, followed by plosives, semivowels, nasals
and finally liquids. However, rates of improvement differ by a
factor of around 3 to 4 during certain periods of the training.
It appears that the best performing BPCs primarily profit from
a steep rise during the first part of the training, while lower-
performing BPCs such as nasals and liquids lack this speed rise
and show a very shallow increase in performance across the

Figure 3: Example of predictions in the output space Y . Origi-
nal c1 (dashed, red) and a number of c1-predictions (solid) from
independently trained different DNNs.

entire training. In general, low performing BPCs also show a
much larger variation across different training runs compared to
better performing BPCs. This difference between BPCs cannot
be attributed to frequency of occurrence of the phone tokens;
instead, it is likely that this difference has to do with how ‘en-
tangled’ the phone encoding is in the bottleneck space. This
will be addressed in the third experiment.

3.3. Are bottleneck representations diffeomorphic?

In the third experiment we focus on the bottleneck layerH with
dimension nh, but from another viewpoint: we compare differ-
ent bottleneck representations in separately trained DNNs that
share the same topology (8 − nh − 8). Similar to the previous
experiment, the DNNs were set-up as autoencoders on TIMIT
and used the ‘tansig’ function as transfer function and the ‘pure-
lin’ from the last hidden layer to the output layer. There was no
regularization: no additional constraints were imposed on the
hidden representations.

The DNNs have the freedom to implement the mapping
from input space (X) to output space (Y ) in multiple ways (e.g.,
modulo affine transformations such as scaling, reflections, per-
mutations and rotations in the hidden layers), which evidently
may result in different ‘solutions’ in H (see also [13], p. 12).
The question is which structure is shared among these different
solutions. Can all hidden representations be ‘morphed’ into one
another, or are there distinct ‘non-morpheable families’?

We first investigated 16 DNNs with nh = 6, and first
checked that these were mutually comparable in their I/O map-
ping X → Y . Fig. 3 shows the cepstral component c1 in
the original X space (red, solid) and several Y outputs (black,
dashed). For all cepstral components, the average correlation
between predicted and observed components was 0.96, with a
low standard error between observed and predicted components
(0.3). The correlations between the components in Y across
different training runs have an average of 0.975 (min. 0.95).

Such a nice correspondence was absent between the hidden
representations. Even when permutations were taken into ac-
count, correlations between the best-pairing components ranged
from 0.4 up to 0.85. However, it appears that, for nh = 6, all
different H representations could successfully be non-linearly
morphed into each other, yielding an average correlation be-
tween the morphed H and the target H equal to 0.96. That is,
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between any two hidden representations H(1) and H(2), a mor-
phingM : H(1) → H(2) exists that adequately morphs H(1)

into H(2). The morphing function M was chosen of the fol-
lowing form: y = (L1 · T · L2·)x = L1(T (L2(x))) in which
T represents the ‘tansig’, and L1 and L2 linear weightings.

This ‘morphing’ experiment was repeated for different val-
ues of nh, ranging from 5 to 8. Not surprisingly, the corre-
lation between predicted output and input of the autoencoders
increases with nh (for nh = 5 and 8, this average is 0.93, and
0.97, respectively). The average correlation between the com-
ponents of H(1) and H(2) after morphing increased from 0.94
(nh = 5) to 0.97 (nh = 8). This suggests that, for a given
nh, two different hidden representations share the same ‘knowl-
edge’ about the acoustic data structure in the input space, albeit
in a non-linearly morphed, twisted way.

The question is how these morphing functions behave. It
can be expected that the morphing function M from H(1) to
H(2) will be 1-1 and smooth (i.e. a diffeomorphism) on a large
region of H(1), but not necessarily on the entire H(1). We ex-
pect this region to be larger if the morphisms are more accu-
rate, that is, for larger values of nh. This was investigated by
considering the determinant det() of the Jacobian matrix ofM
(Jac(M)). This determinant depends on the location in H(1).
A value of 0 would imply that the morphing functionM is not
1-1 any more. The larger the ‘volume’ of the subspace in H(1)

on which det(Jac(M)) keeps away from 0, the fewer issues
arise in the preservation of the information from X to Y .

In general, in the majority of all points centered around the
mean in H(1), either det(Jac(M)) > 0 or det(Jac(M)) < 0
(this happens if the mapping includes e.g. a mirroring, or a per-
mutation of coordinates, which of course does not matter at all
for the input-output mapping of the DNN itself). An example of
this ‘sign preserving’ behavior is shown in Fig. 4, for nh = 6.
The figure shows, for a concrete DNN pair, the relation between
det(Jac(M)) (vertical axis) and the distance from the mean in
H(1) evaluated along many random ‘rays’ through the mean of
H(1). The distance to the mean of H(1) is expressed in terms
of standard deviation, taking into account the covariance matrix
of H(1). For points around the mean of H(1), the determinant
remains positive, but for distances about 2σ from the mean, the
determinant might cross 0 and change sign (exactly when this
happens depends on the direction chosen in theH(1) space; this
cannot be displayed in the figure). The dark gray and light gray
band indicate the 90 and 95 percentile, respectively, while the
dark line represent the median, across all rays. The positiveness
of det(Jac(M)) around the mean implies that there is a sub-
stantial ‘safe’ volume around the mean in which the morphing
is indeed 1-1. For nh = 6, 84% of all TIMIT feature vectors
are located in this ‘safe’ volume. For values of nh < 6, this
volume appears smaller (e.g., for nh = 5, it covers only 69%
of all TIMIT feature vectors) , while for larger nh this volume
is larger (nh = 8: 94%). If the mapping from X → Y would
be perfect, the ‘safe’ volume would likely cover the entire space
H(1). These results suggest that an inspection of the hidden rep-
resentation of a DNN should be considered modulo non-linear
morphing functions: two seemingly differentH representations
might actually yield the same I/O mapping (cf. [13], p. 12).

4. Discussion and conclusion
In this paper we aim at understanding the internal representation
(H) in a trained DNN. Three different experiments were carried
out to untangle how a DNN encodes information in speech, and
to relate these representations to phonetic knowledge.

Figure 4: Determinant of the Jacobian of the mapping M :
H(1) → H(2), as function of the distance from the mean in
H(1). On the horizontal axis, 0 refers to the location of the
mean. The plot shows an overlay of values obtained along
different ‘rays’ trough the mean. The black line represents
the median, while the dark and light gray areas represent the
[−90, 90] percentile region and the [−95, 95] region, respec-
tively. Clearly the determinant remains positive within about a
2σ-wide area around the mean, independent of the direction.

The first experiment is chosen in line with [7, 10] and uses
a CNN. It shows how convolution matrices in the first layer of
a CNN show glimpses of spectro-temporal patterns similar to
formant transitions. There is a similarity with the ears and noses
in well-known image classification DNNs. When the number of
nodes in the first hidden layer was increased from 2 to 4, 4 to
8, etc., the new convolution matrices can be seen as refining the
ones in the previous run, in line with [7, 6].

The second experiment focuses on the Kullback-Leibler
dissimilarity between classes in the bottleneck space as a func-
tion of epoch, in which the classes are defined by the TIMIT
segmentation for vowels, semivowels, liquids, nasals, fricatives,
and stops. The information in the bottleneck can be considered
a snapshot: during a training, classes consistently appear to their
own improvement rates (with differences between classes up to
a factor 4). At any time, the representation on the bottleneck
may be a mix of mature and less mature unfolded acoustic struc-
ture, in line with observations in [13, 8].

The third experiment shows that bottleneck representations
of DNNs with the same topology trained on the same data can,
in many cases, be adequately morphed into each other in a non-
linear fashion. Linear mappings are insufficient for this pur-
pose. This shows that bottleneck representations are actually
exchangeable for other representations that look very different.
It is tempting to relate this to the ‘information plane’ [8]. In our
experiments we did not see hidden representations that could
not be morphed, but we cannot exclude this a priori – it would
imply the existence of ‘families’ or ‘regimes’ of hidden repre-
sentations.

We applied small DNNs. From these experiments, which
we regard as first steps, we learned that the information avail-
able at the hidden layers may provide a lot of useful informa-
tion, but the investigations reported here still require quite some
CPU time and math machinery. Nevertheless we think informa-
tion extraction from hidden layers, also from deeper networks,
is an interesting and potentially useful future direction.
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