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Abstract
Deep Neural Network (DNN) acoustic models are an essen-
tial component in automatic speech recognition (ASR). The
main sources of accuracy improvements in ASR involve train-
ing DNN models that require large amounts of supervised data
and computational resources. While the availability of sufficient
monolingual data is a challenge for low-resource languages,
the computational requirements for resource rich languages in-
creases significantly with the availability of large data sets.

In this work, we provide novel solutions for these two chal-
lenges in the context of training a feed-forward DNN acous-
tic model (AM) for mobile voice search. To address the data-
sparsity challenge, we bootstrap our multilingual AM using data
from languages in the same language family. To reduce training
time, we use cyclical learning rate (CLR) which has demon-
strated fast convergence with competitive or better performance
when training neural networks on tasks related to text and im-
ages.

We reduce training time for our Mandarin Chinese AM with
81.4% token accuracy from 40 to 21.3 hours and increase the
word accuracy on three romance languages by 2-5% with mul-
tilingual AMs compared to monolingual DNN baselines.
Index Terms: speech recognition, multilingual, cyclical learn-
ing rate

1. Introduction
State-of-the-art hybrid ASR systems consists of a neural net-
work AM, a pronunciation model (PM), and a language model
(LM) which are built or trained separately. The AM is typically
a feed-forward (FF), long short-term memory (LSTM), convo-
lutional neural network (CNN) or a mixture. Hybrid systems
with LSTM AMs tend to provide state-of-the art performance
on public benchmarks, but FF AMs are still used in production
systems because they provide good performance and are easier
to train.

Since DNN-HMM systems are complex and rely on hand-
crafted lexicons, all-neural end-to-end (E2E) and lexicon-free
approaches to ASR have received a lot of attention in the re-
search community because they simplify the ASR pipeline.
While interesting, these approaches suffer from a few draw-
backs that make them impractical. Attention-based models such
as ”Listen-Attend-Spell” require the entire sequence as input
which makes it impossible to stream audio to the ASR system
and show incremental output [1]. E2E ASR systems trained
with connectionist temporal classification (CTC) do not reach
the same performance and require orders of magnitude more
data to train reliably if the E2E systems directly outputs words
[2]. For these reasons, hybrid DNN-HMM systems are still
widely used despite being more complex.

Multilingual ASR has been investigated in low-resource
settings for decades and generally fall into two categories:
data augmentation (multilingual) and model adaptation (cross-

lingual) [3, 4, 5, 6]. In [7, 8], data from related languages im-
prove phone modelling by providing better coverage of phonetic
contexts. However, [9] shows multilingual data can have ad-
verse effects on performance compared to monolingual training
if there is sufficient data available. We show that data from the
same language family can improve ASR accuracy in resource-
rich languages and minimize negative effects from the differ-
ences between the training languages by carefully constructing
a universal phoneme mapping to guide tree-clustering.

Language-independent data augmentation techniques that
perturb your data set or apply different types of noise have been
proposed to create more training data [10, 11, 12, 13, 14]. We do
not use these techniques in our work, but they could be applied
as a pre-processing step.

A cyclical learning rate schedule similar to CLR is SGD
with warm restarts (SGDR) [15]. In SGDR, the learning rate
starts at a high rate and anneals to a low learning rate at the end
of a cycle which means the learning rate jumps directly from
low to high learning rate. SGDR should force SGD to jump
out of one minimum and converge to a new minimum that po-
tentially improve accuracy. Because SGDR should discover a
number of different minima, it is possible to ensemble the mod-
els at each minimum and realise better performance in some
cases [16]. In our experiments, we did not achieve good re-
sults with SGDR and [17] observe that the jump from a small
learning rate directly to a large learning rate can cause training
error to spike and make convergence more difficult especially
in the beginning of training when the network weights change
rapidly between updates. They suggest that a warm-up phase is
necessary and this is built into CLR, but not SGDR.

Adaptive learning rates like ADAM [18], Adagrad [19] and
Adadelta [20] have been proposed as an alternative to annealing
schedules, but [21] show that adaptive learning rates can con-
verge to sharp minima that do not generalise well. The high
learning rates used in CLR helps SGD to skip over sharp min-
ima and converge to a wide minimum.

[22] investigates how to reduce training time for multilin-
gual ASR and achieve a training time reduction of 46-65% with
same or slightly improved word error rate (WER). The reduc-
tion comes from multilingual initialisation and using a bottle-
neck feature extractor. The accelerated training speed is gained
from bottle-neck features which is orthogonal to our work and
could potentially be combined.

Our contributions in this paper are

• A method to use multilingual data to improve ASR per-
formance in resource-rich languages with data from the
same language family.

• We show that CLR can reduce DNN AM training time
when computational resources are limited and data sets
are large.
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2. Multilingual DNN AMs
Multilingual DNN AM training is a good example of multi-task
learning (MTL) [23, 24] which aims to train a model with data
from related tasks to improve performance on a target task. Fig-
ure 1 shows a typical multilingual DNN architecture using hard
parameter sharing in the hidden layers and language-specific
softmax outputs.
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Figure 1: Typical multilingual DNN AM with hard parameter
sharing

In our work, we adopt an architecture with an embed-
ding layer which allows sharing a single softmax output layer
across all the languages. To train our multilingual DNN AM,
we first bootstrap monolingual DNN AMs from GMM AMs
in each language. We then relabel the training data and use
tree-based clustering and state-tying to create a new label set.
The language-specific phoneme sets use symbols from SAMPA
which we use to create a cross-lingual phoneme mapping. We
use this phoneme mapping and phonetic features in addition
to filterbank coefficients to guide the clustering. The state la-
bels become the multilingual softmax output nodes and the pho-
netic context-tree is used to estimate language-specific PMs and
LMs. Because we can use a single softmax output layer, we can
train as we do in the monolingual case and the linear transform
resembles a cross-lingual label embedding layer as shown in
Figure 2. The number of output nodes serving each language
varies depending on the number of phonemes in the language
and the size of training data. We randomise training utterances
across languages before feeding them into DNN training.
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Figure 2: Multilingual DNN AM with embedding layer

We observe that our multilingual AMs consistently improve
word accuracy by 2-5% compared to monolingual DNN AMs,

but the training time is also increased by the number of training
utterances [25]. It took a month to train a multilingual DNN
AM on 1000 hours of speech on a NVIDIA K20 GPU and 10
days on a Pascal 1080 GPU in our experiments. Therefore, we
explore the possibility to accelerate multilingual DNN training
with cyclic learning rate schedule.

3. Cyclical Learning Rate
When we train a DNN model, we want our model to converge to
a good solution quickly and the most important hyper-parameter
in this respect is the learning rate (LR). If the LR is too small,
it will take a long time for the model to converge which is a
challenge if we wish to update a model frequently as we acquire
new data that can improve ASR performance. If the LR is too
high, the model can fail to converge. Choosing the right LR
requires skill, experience and a lot of experiments due to effects
from regularisation, annealing and momentum [26, 27].

A simple LR schedule that offers a method to set the global
LR is the cyclical learning rate proposed in [28]. This approach
requires you to

1. Choose stepsize and cycle length
2. Find the upper and lower bound with the LR range test
3. Train for a number of cycles
A cycle goes from a low LR to a high LR and back to a

low LR and usually has a triangular shape. A step is half a
cycle and the step size is between 2-10 epochs so the LR reaches
minimum and maximum values when an epoch is finished and
we decrease or increase the LR over several epochs.

Figure 3: LR range test on our internal Mandarin Chinese data
set.

To find the upper and lower bound on CLR for a new model
or data set, we train the model for a single step from a very
low bound to a very high bound e.g. 0.000001 to 1. We find a
suitable upper bound just before accuracy stops increasing. In
Figure 3, a suitable lower bound might be 0.00001 (or 0) and
the upper bound 0.055 or 0.1.

We then train for a number of cycles and evaluate. [29] sug-
gests that in some cases we may only need to train for a single
cycle which will greatly speed up training and also corroborate
the findings in [30] that high LRs regularise training and con-
verge to wide minima that generalise better to unseen data than
the sharp minima adaptive learning rates are prone to find.

CLR and the LR range test provides a principled way to find
a good LR when we work with a new model or new data set so
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we do not need to run many trial and error experiments to find
a good LR.

4. Experiments
4.1. Data

Monolingual DNNs were trained on Mandarin Chinese (ZH-
CN) and multilingual DNNs on European French (FR-FR),
Italian (IT), European Spanish (ES-ES) and American Spanish
(ES-US). We use DNNs trained with our previous optimal LR
schedules as baselines and compare to CLR. The domain of our
data sets is mainly mobile voice search and Table 1 clearly in-
dicates that we are not in a low-resource scenario. Tokens are
words except for ZH-CN where tokens are symbols.

Table 1: Training data statistics

Model Language Hours Types Tokens

Monolingual ZH-CN 379 5799 3365426

Multilingual FR-FR 290 51915 1515568
IT 345 56731 1422268
ES-ES 400 58887 1822116
ES-US 160 35281 1638681

4.2. CLR on Mandarin Chinese

We train a 5-layer FF-DNN with 1280 nodes in each layer fol-
lowed by a linear transform and a softmax layer with 31,661
output nodes and initialise all affine layers with a diagonal ma-
trix which gives a small constant accuracy boost in our experi-
ments. We use ReLU activations, cross-entropy as loss function
and standard SGD without momentum or regularisation. The
input is 80-dimensional log filterbank coefficients plus energy
stacked with ±8 frames of context (1377 dimensions in total).
Energy-based voice activity detection has separated speech and
non-speech frames before training.

The baseline trains with a LR of 0.01 for 6 epochs, 0.001
for 2 epochs and 0.0001 for several epochs, but no improve-
ment was observed after 4 epochs. Like [28], we will denote
this schedule as piece-wise constant LR (PC-LR). The upper
and lower bound on CLR are 0.0001 and 0.055 and were found
based on Figure 3. We estimate a trigram LM on the training
transcripts to use in decoding.

Our training code uses an intermediary data partitioning
called a chunk that is larger than a mini-batch and smaller than
an epoch. We set the chunk size to 2002 utterances and define
CLR per chunk rather than per mini-batch because the batch
size is dynamically resized depending on the data. Between
epochs, we randomly shuffle the order of chunks and shuffle
samples within chunks.

Table 2: ZH-CN validation accuracy and training time

Model Frame Token Train time Epochs

PC-LR 35.08% 81.3% 40h 10
CLR4 34.86% 81.4% 21.3h 4
CLR8 34.81% 81.3% 40.3h 8

The frame accuracy curves in Figure 4 show that when the
LR decreases, the training accuracy drops, but at the same time

validation accuracy peaks. CLR peaks after 17 hours and after
36 hours which is faster than the baseline which achieves the
highest validation accuracy after 40 hours. The frame and token
accuracies in Table 2 show that we do not lose performance and
we have added the LR range test to the training time for fair
comparison (4.3h). On a single Pascal 1080 GPU, we can cut
training time in half and CLR has the potential to significantly
reduce the training time of our large scale DNN AM training.

Figure 4: Frame accuracy on the validation and training set
using CLR and PC-LR as baseline.

4.3. CLR on multilingual DNN

The multilingual DNN is a 7-layer ReLU FF-DNN, the chunk
size is 4000 utterances, the input uses a context window of ±9
frames and the upper and lower bound on CLR are 0.0001 and
0.024 but otherwise identical to the monolingual ZH-CN AM.
Our results in Table 3 confirm that we can reduce training time
for large scale multilingual training with CLR with little loss
of performance. We can train competitive multilingual AMs
with CLR more than twice as fast as the baselines. On Span-
ish, the CLR-trained multilingual AM underperforms by 0.7%
absolute compared to the previous best multilingual AM but all
CLR models trained for 8 epochs outperform the monolingual
baselines.

Table 3: Comparison of DNNs in word accuracy

DNN type Epochs FR-FR IT ES-ES

Monolingual 20+ 77.7% 80.2% 80.5%

Multilingual 20+ 82.9% 84.1% 82.0%

with CLR, 4 81.8% 83.1% 80.5%
cycle-len=4 8 82.6% 83.9% 81.3%

with CLR, 2 80.8% 81.7% 79.4%
cycle-len=2 4 81.6% 82.8% 80.5%

8 82.1% 83.7% 81.2%

4.3.1. Training time

To further reduce training time, we cut the cycle length into 2
epochs. Figure 5 shows the frame accuracy curves using two
different CLR schedules, one with 2 epoch cycle (green line)
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Figure 5: Frame accuracy comparison on multilingual DNN
training using 1) CLR and 2) exponential decay plus newbob

and 4 epoch cycle (red line) as well as exponential decay learn-
ing rate then newbob schedule. All models obtained after 4 and
8 epochs in Table 3 have similar word accuracies, but the mod-
els obtained after 2 epochs may outperform the monolingual
baseline for some languages.

4.3.2. Performance impact

In addition to the triangular learning rate schedule, we trained
multilingual DNNs using the triangular2 policy described in
[28] which cut the maximum learning rate in half at the end
of each cycle while maintaining the same minimum learning
rate. As shown in Figure 6, DNN training with triangular2
achieves better frame accuracy on validation than standard tri-
angular in our experimental results. Table 4 also shows that we
could achieve the same word accuracies with CLR while reduc-
ing training time from 20+ epochs to 12 epochs in Italian data.

Figure 6: Frame accuracy comparison on multilingual DNN
training using 1) CLR and 2) triangular2

5. Discussion
The techniques we use to create multilingual AMs have been
used in speech research for a long time and the improvements in

Table 4: Comparison of triangular and triangular2 on Italian
word accuracy

LR type Number of Epochs
4 8 12

triangular 83.1% 83.9% 84.1%
triangular2 – 83.5% 84.2%

word accuracy make our approach a useful alternative to semi-
/unsupervised training. An additional benefit is that our ap-
proach can be combined with semi-/unsupervised training and
other data augmentation techniques.

Our multilingual AM training relies on both data and lin-
guistic knowledge. The linguistic knowledge is encoded in the
SAMPA labels, the phonetic features, and the choice of data
which we believe has a large influence on the success of our
multilingual training because the cross-lingual phonetic differ-
ence is reduced compared to mixing data from different lan-
guage families. We will continue this research and investigate
the sensitivity of our approach to the acoustic input and the
amount of linguistic information. If we can reduce the amount
of linguistic knowledge or add data from different language
families, the approach becomes more scalable. Auto-encoder
techniques like those in [31] could reduce the phonetic differ-
ence and improve the cross-lingual tied-state clusters with less
linguistic knowledge and diverse acoustic data. The next re-
search direction will be to decode languages not used in train-
ing.

CLR effectively speeds up AM training with a large data
set from various sources and training time could be even fur-
ther reduced by using momentum optimisers which were not
introduced in our work. We see no reason why similar time
reductions should not be realised when training is distributed
on multiple GPUs. The LR range test removes the need to set
the learning rate and annealing schedule manually or by exten-
sive search, but is currently an automation bottle-neck. The LR
range test needs to be interpreted by a human and we are inves-
tigating an automatic way to determine the bounds on CLR and
how the bounds may change when data are added in portions.

6. Conclusion
We have demonstrated that multilingual data from the same
language family can improve word accuracy on languages in
the training data with a novel approach that uses standard ASR
techniques. We have also applied a simple cyclical learning rate
schedule to FF-DNN AM training and achieved training time
reduction with little or no loss of word accuracy in both mono-
lingual and multilingual training.

This work suggests that CLR effectively speeds up DNN
training while requiring minimal computation. It is easy to im-
plement unlike other adaptive learning rate approaches, but pro-
vides significant improvement in DNN AM training. Though
CLR finds minima with lower training accuracy at the end of a
cycle, the solution generalises well for the validation data sug-
gesting convergence towards near optimal results.
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