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Abstract

In recent years, neural networks have become one of the com-
mon approaches used in speech recognition(SR), with SR sys-
tems based on Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs) achieving the state-of-the-art
results in various SR benchmarks. Especially, since CNNs are
capable of capturing the local features effectively, they are ap-
plied to tasks which have relatively short-term dependencies,
such as keyword spotting or phoneme-level sequence recog-
nition. However, one limitation of CNNs is that, with max-
pooling, they do not consider the pose relationship between
low-level features. Motivated by this problem, we apply the
capsule network to capture the spatial relationship and pose in-
formation of speech spectrogram features in both frequency and
time axes. We show that our proposed end-to-end SR system
with capsule networks on one-second speech commands dataset
achieves better results on both clean and noise-added test than
baseline CNN models.

Index Terms: speech recognition, capsule network, routing-by-
agreement, convolutional neural network

1. Introduction

Early-stage studies using neural network in automatic speech
recognition were mostly hybrid speech recognition (SR) sys-
tems incorporating with Hidden Markov Models/Gaussian Mix-
ture Models (HMMs/GMMs) [1, 2]. In the hybrid SR sys-
tems, the neural networks accept features generated from
HMMs/GMMs and predict frame-level targets. However, the
hybrid systems have the issue of having to set hyperparameters
and train the networks separately.

Therefore, recent neural network based SR systems aim for
an end-to-end system. Owing to the property of recurrent neu-
ral networks (RNNGs) that show strengths in capturing long time
dependency and that of convolutional neural networks (CNNs)
in detecting the local features, a RNN-variant Long Short-Term
Memory (LSTM) model combined with a Connectionist Tem-
poral Classification (CTC) [3] model is achieving the-state-of-
the-art performance in common SR systems [4, 5, 6]. However,
training RNNS takes a longer time than CNNs due to the compu-
tational expensiveness and is trickier due to the gradient vanish-
ing/exploding problem. Therefore, for tasks that have short time
dependency such as keyword spotting or phoneme-level recog-
nition, CNN based SR systems are still taking an active part of
research and show competitive performance [7, 8, 9, 10].

However, the fundamental problem of CNNss is that it is not
able to capture the spatial relationships of low-level features.
For example, face detection using CNN can extract the low-
level features such as eyes, nose, and mouth using edge or color
gradient information and combine them with weighted sum at a
higher level and decide whether the object is a face or not. Dur-
ing this process, CNN does not consider any spatial relation-
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ship or orientation of features: for instance, it disregards where
the eyes and noses are placed. The problem is often handled
by including max-pooling or building a deep network, making
each high layer neuron have a larger receptive field. However,
max-pooling leads to the loss of valuable information by ignor-
ing all but the neurons with the maximum activation value, and
there exists an upper limit in increasing the receptive field by
the max-pooling and deep network.

We conjectured that in the speech domain, the spatial re-
lationship among the speech features would also play a crucial
role. In the conventional speech analysis, valuable information
such as pitch and formant frequencies [11, 12] is gained from
the spectrogram converted from the raw speech waveform. The
position and the relationship of these features in frequency and
time axes decide what speech the spectrogram represents. How-
ever, because the existing CNN based SR systems do not con-
sider the spatial relationship of these features, there would be a
limitation in performance, which can be overcome by applying
the capsule network [13] instead, which considers the spatial
relationship and pose information. Inspired by this, we applied
the capsule network in SR systems and compared its perfor-
mance with CNN based systems. For comparison, we used a
one-second speech command recognition task [14] to evaluate
the performance in clean and noisy environments. Because the
one-second speech command dataset is developed for consumer
and robotic applications, we sought to reduce the models pa-
rameter number. With this goal, we ran a set of experiments
while varying factors such as the kernel size, absence or pres-
ence of decoder, channel size, input and output capsules vector
length to find the best capsule network model. Comparing the
best capsule network and CNN model, the capsule network had
11.6% less error rate (ER) in clean test, and 10.4% less ER in
noisy test.

In section 2, we will discuss the capsule network in depth.
In section 3, we will describe the architectures of baseline CNN
and the capsule network. Then in section 4, the dataset, train-
ing and evaluation techniques, and the result will be described.
Finally, we will discuss the results and suggest future work.

2. Capsule Network

Hinton et al. [13] suggested the idea of ’capsule’ and the it-
erative routing-by-agreement mechanism. In this scheme, one
converts a scalar output neuron to a vector output neuron called
a capsule. By using the vector neuron, the capsule network can
capture the various pose information such as translation and ro-
tation of objects and contain it in a small vector. The original
authors designed the capsule to encode the probability of entity
exists as its length and the pose information as its orientation.
Then, with the routing-by-agreement between capsules, the net-
work can learn the hierarchical relationship between these pose
information capsules contained.
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The capsule network replaces the scalar neuron, which most
of previous neural networks including Deep Neural Networks
(DNNs) and CNNSs use, to the vector neuron which is a capsule.
Assume that there is a capsule = which represent the ith cap-
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Then we compute the output capsule with updated b;; again
and keep updating b;; for r routing times. This is called the
routing-by-agreement because by dot product of ! and myH)
in Equation3, it computes the agreement between the child cap-
sule and parent capsule and update the coupling coefficient with
1t.

They use the squashing function [13] for training the cap-
sule network, which makes short vectors have a length close to
zero and long vectors to a length close to one.
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Finally, for the loss function, margin loss is used to train the
model. L. is the margin loss of class ¢, and v, is a final output
capsule in class c. T, = 1 iff the target class is ¢, m™ = 0.9,
m~ = 0.1,and A = 0.5.
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In the paper [13], authors also built the decoder network
that reconstructs the input image from the output capsules. It
has three layers of fully connected (FC) layer with ReLU acti-
vation for the first two and sigmoid for the last, and is trained
by computing mean squared error (MSE) between its output and
the training image. Scaled-down MSE is then added to margin
loss in Equation 5, which also works as a regularization term.

3. Model
3.1. Baseline CNN

For the baseline CNN models structure, we used a standard
CNN, which has three convolutional layers at the front and fol-
lowed by two FC layers. Each of the convolutional layers has
a stride of 1 without any padding, and has ReL.U for activation
function. In precedent researches that tried to adjust CNNs for
speech recognition tasks, they added max-pooling after the first
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convolutional layer only over the frequency-axis [10]. There-
fore, similarly, we added max-pooling after the first convolu-
tional layer with the kernel size and the stride of (1x3). After
the last FC layer, one more FC layer with size 30 classes fol-
lowed. Dropout [15] was applied in the layer before the output
layer, and softmax was applied at the output layer. In the exper-
iment, we changed the kernel and the channel size of convolu-
tional layers and channel of two FC layers.

3.2. Capsule Network

We used the basic capsule network architecture [13] as Figurel.
It has one convolutional layer, one input capsule layer, and one
output capsule layer. The first convolutional layer is followed
by ReLU non-linear activation function with stride of 1 and
256 channels without any padding. To make an input capsule,
we convolved the output of the first convolutional layer with
channel size of ’input capsule vector length’ and stride of 2 for
’capsule channel’ time. Here, instead of convolving for ’cap-
sule channel’ times, we convolved only once with channel of
[capsule channel X input vector length] and then reshaped it to
make the input capsule. From this input capsule layer, we can
compute the output capsules with the routing algorithm as we
described in section 2. The number of capsules in the output
capsule layer will be the same as the class number.

To find the optimal capsule network architecture for one-
second SR task, which achieves good performance with less
parameters, we changed various hyperparameters in the capsule
network and compared the results. We set the five hyperparam-
eters as 1)the kernel size of convolution before the first convo-
lution layer and the input capsule layer 2)presence and absence
of a decoder network which reconstructs input image 3)capsule
networks channel 4)input capsules vector length and 5)output
capsules vector length. From the combination of 1)to 5), we
searched for the best hyperparameters systematically and finally
obtained the best model.

4. Experiment
4.1. Data

The speech commands dataset [14] consists of 64,727 audio
files. The audio files were collected by crowdsourcing. They
are labeled with 30 commands, which are divided into 20 main
commands and 10 sub-commands recorded to help recogniz-
ing unrecognized words. Additionally, the dataset provides the
background noise audio files with white and pink noise and
some everyday life noise. The details of commands can be
found in Tablel.

Since this dataset was produced for consumer and robotic
application purposes, they did not give strict guidelines for qual-
ity during crowdsourcing, other than to record in a closed room.
Therefore, we assumed that the audio files in the dataset already
contain a little noise, and when we added the background noise,
the actual SNR would be lower than we expected. Each 10% of
dataset was split for validation and testing.

We converted the raw audio files into 40-dimensional log
mel-filter-bank coefficients with deltas and delta-deltas. They
were computed with 20ms window, 10ms stride and normalized
to have zero mean and unit variance.

4.2. Training and Evaluation

For training, we trained on a clean dataset with 30 labels
(main and sub commands in Table 1). We used margin loss
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Figure 1: The capsule network architecture with kernel size 19, 64 channels, input vector length of 8 and output vector length of 16.
It is first convoluted with stride 1 and channel of 256, and then convoluted with stride 2 with (64X 8) channels which is channel size
and input vector length. Then it is reshaped into [4096, 8] size array which makes input capsule layer. The routing algorithm is used
to update coupling coefficient between input and output capsule layers. The output capsule layer has 30 columns because we train on

30 command labels.

Table 1: Speech Commands Dataset.

Type Commands

down, eight, five, four, go, left, nine,
no, off, on, one, right, seven, six, stop,
three, two, up, yes, zero

Main commands

bed, bird, cat, dog, happy, house,

Sub-commands . .
marvin, sheila, tree, wow

doing the dishes, dude miaowing,
exercise bike, pink noise,
running tap, white noise

Background noise

(Equation5) for the capsule networks, and added scaled-down
decoder MSE when the decoder network was used. CNNs were
trained with cross entropy loss. We used the Adam optimizer
[16] with learning rate 0.001 and 3 routing times in capsule net-
work routing. For capsule networks, weight initialization was
quite important for convergence. We used the normal distribu-
tion initializer with standard deviation of 0.01 for capsule layers
and the Xavier initializer[17] for CNNs.

During evaluation, we used 20 main command labels
plus one unrecognition label, which was used instead of sub-
command labels, in both clean and noisy datasets. To make the
audio files noisy, we randomly picked one type of noise from
the provided background noise files and randomly clipped one
second. Then we added it to a clean audio file at 5dB SNR. Be-
cause of this randomness, we evaluated on the noisy dataset for
five times and averaged to get reliable results.

4.3. Result

For the baseline CNN models, we maintained the architecture
described in section 3 and tested various sizes of kernels and
channels of convolutional layers and the size of FC layers to find
the best model. For capsule networks, we searched the best hy-
perparameters sequentially in the order of kernel size, decoders
presence, channel size, input vector length, and output vector
length. The starting model was kernel size 9, with decoder, 64
channels, 8 input-vector length, and 16 output-vector length.
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4.3.1. Baseline CNN

Maintaining the standard architecture determined in section 3,
we varied the kernel size and output channel of both convolu-
tional layers and FC layers. The "CNN-1" model had the kernel
size (5,5) and 128, 256, 256 channels for convolutional layers
and two 1024 channels for FC layers. ’CNN-2’ had (5,5) kernel
and 128, 64, 64 channels and 512, 512 FC channels. ’CNN-3’
had (5,5) kernel for the first two convolutional layers and (7,7)
for the last convolutional layer, the channels are 32, 64, 64 and
512, 256 for FC layer. In our experiment, when we reduced
the number of parameters less than ’"CNN-3’, the CNNs did not
converge or had significantly high test ER. The "CNN-3" was
the best model with clean ER 22.1% and noisy ER 55.1%.

4.3.2. Capsule Network

Starting from kernel size 9, we increased the kernel size and ob-
served the number of parameter (NP), the clean and noisy ER
in Table2. Up until kernel 19, the NP kept decreasing. How-
ever, with kernel size larger than 19, the size of image after
the second convolutional layer became negative. To make the
image size positive, we added zero-padding after the first con-
volutional layer, so the NP increased. The kernel 19 performed
the best in clean, and kernel 25 was best in noisy test data. Even
though the kernel 25 got least noisy ER, we chose kernel 19 be-
cause it had much less NP than 25 and had the least clean ER
and second-to-the-last least noisy ER.

In this work, we focused on building well performing SR
systems, with less emphasis on making the decoder converge.
We compared the result after removing the decoder from ’Caps-
kernell19’, and the model without the decoder showed similar
but a little worse performance in the clean and noisy test. How-
ever, we could take advantage of parameter reducing without
the decoder, and we found that in most cases the decoder net-
work did not train well. Therefore, in further experience we
used a model without the decoder.

With the number of channels, ’Caps-channel32’ had the
least NP, clean ER, and noisy ER. For input and output vectors,
they both had least clean and noisy ER with vector length 4,
so we chose vector length 4 for both input and output capsule.
The final best capsule network architecture we found through
the experiment was ’Caps-outputvec4’ which has kernel size
19, without decoder, channel of 32, and input and output cap-



Table 2: Clean and noisy Error Rate(ER) of various base-
line CNN and capsule network(Caps) models trained on clean
dataset. 'NP’ is the number of parameter. The model details
are in section 4.3.

Model NP clean ER noisy ER
CNN-1 94.8M 24.2% 59.5%
CNN-2 12.0M 24.1% 57.2%
CNN-3 6.0M 22.1% 55.1%
Caps-kernel9 139.3M 20.8% 58.9%
Caps-kernell1 119.0M 20.2% 55.0%
Caps-kernel13 101.7M 21.6% 58.8%
Caps-kernel15 87.5M 19.0% 61.1%
Caps-kernell7 76.2M 16.3% 55.9%
Caps-kernel19 68.0M 12.7% 49.7%
Caps-kernel21 161.1M 26.2% 57.3%
Caps-kernel25 161.6M 13.1% 45.6%
Caps-kernel30 174.6M 19.6% 56.5%
Caps-NoDecoder  63.1M 13.9% 52.5%
Caps-channel32 31.6M 11.3% 47.4%
Caps-channel96 94.7TM 15.1% 56.1%
Caps-channel128  131.0M 15.2% 55.9%
Caps-inputvec2 8.0M 12.2% 47.4%
Caps-inputvec4 15.9M 11.6% 47.3%
Caps-inputvecl6 63.1M 12.3% 48.6%
Caps-outputvec2  12.4M 11.1% 48.4%
Caps-outputvecs 12.9M 10.5% 44.7%
Caps-outputvec8 13.9M 11.4% 50.9%

sules vector length of 4. Comparing the best capsule network
model and best CNN model, the best capsule network model
had 11.6% and 10.4% less ER in clean and noisy dataset each.

Since the best CNN model had less parameters than the best
capsule network model, we ran additional experiments for com-
parison (Table 3). To reduce the number of parameters from the
best capsule network model, we compared the results with var-
ious input and output vector length while fixing the kernel size
to 19, channel to 16 and without a decoder. The capsule net-
work model with input vector length 2 and output vector length
16 (’Caps-inputvec2’ in Table3) had about 4.0M NP, which was
about 67% of the NP of the best CNN model, but had 9.1% less
clean ER and 2.9% less noisy ER.

5. Discussion

Almost every capsule network based model performed better
than the baseline CNN models, and even with less NP, they got
significantly better results than the CNNs. From this, we could
conclude that the capsule networks could capture the speech
features very efficiently. We suggested this was because, by
using capsule and routing-by-agreement algorithm, the capsule
network could contain pose information and spatial relationship
of speech features which CNNs could not, as we originally hy-
pothesized.

When we compared ’Caps-kernel9’ and ’Caps-kernel25’,
they both had large NP but ’Caps-kernel25’ had comparable
performance to the ’Caps-kernel19’ and even got best result in
noisy test where ’Caps-kernel9’ has poor performance. This
suggested that capsule networks could capture the features well
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Table 3: Clean and noisy ER of the capsule network with 16
channels to reduce the NP. In the input vector length experi-
ment, the output vector length was 16, and in the output vector
length experiment, the input vector length was 4

Model NP clean ER noisy ER
Caps-inputvec2 4.0M 13.0% 52.2%
Caps-inputvec4 8.0M 11.3% 52.5%
Caps-inputvecl6  31.6M 11.1% 46.2%
Caps-outputvec2  6.3M 11.6% 53.3%
Caps-outputvec4  6.5M 11.9% 48.5%
Caps-outputvec8  7.0M 10.8% 48.0%

even with a big kernel size. We suggested that this is because
by using vector neuron, the amount of information that each
neuron could contain becomes much bigger.

When we focused on NP, the performance got better when
we decreased the NP until a certain level. This might be because
the network could avoid over-fitting with less NP, but after a
certain level the performance became lower. Therefore, find-
ing the proper number of parameters for the model was impor-
tant. For example, *Caps-inputvec2’ in Table2 had insufficient
NP to contain the features information and ’Caps-inputvecl6’
in Table2 was over-fitted to the train data.

6. Conclusion and Future Work

In this work, we first applied the capsule networks in the speech
domain in place of CNNs to capture the pose information and
spatial relationships among features in frequency and time axes.
We built an end-to-end one-second speech command recogni-
tion system and found the best capsule network architecture
through experimentation. Compared to CNN models, the cap-
sule network based systems achieved much better results in both
clean and noisy data.

Because it was the first attempt to apply capsule network
in speech domain, there is a plenty of room for further work.
For example, we could apply the network to longer time de-
pendency task, such as phoneme-level recognition. Also, we
trained only on the clean dataset in the present study, but it is
possible to train on noisy speech, to make model more noise-
robust. Lastly, it should be examined whether adding regu-
larization techniques such as dropout improves the test perfor-
mance.
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