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Abstract
In this paper, we propose a novel training strategy for attention-
based encoder-decoder acoustic-to-word end-to-end systems.
Accuracy of end-to-end systems has greatly improved thanks to
careful tuning of model structure and the introduction of novel
training strategies to stabilize training. For example, multi-task
learning using a shared-encoder is often used to escape from
bad local optima. However, multi-task learning usually relies
on a linear interpolation of the losses for each sub-task and con-
sequently, the shared-encoder is not optimized for each task. To
solve the above problem, we propose a multi-task learning with
augmentation strategy. We augment the training data by creat-
ing multiple copies of the original training data to suit different
output targets associated with each sub-task. We use each target
loss sequentially to update the parameters of the shared-encoder
so as to enhance the versatility of capturing acoustic features.
This strategy enables better learning of the shared-encoder as
each task is trained with a dedicated loss. The parameters of the
word-decoder are jointly updated via the shared-encoder when
optimizing the word prediction task loss. We evaluate our pro-
posal on various speech data sets, and show that our models
achieve lower word error rates than both single-task and con-
ventional multi-task approaches.
Index Terms: end-to-end speech recognition, attention model,
multi-task learning

1. Introduction
Automatic speech recognition (ASR) systems have been dra-
matically improved with the introduction of deep neural net-
works (DNN) [1]. Currently, a typical ASR system is com-
posed of several modules including acoustic, lexicon, and lan-
guage models. The best system for the conversational telephone
speech task [2] adopts the approach of combining deep learn-
ing and probabilistic models [3]. Such ASR systems can now
match human recognition performance [4, 5], but at the cost of
large runtime latency and less portability. Recent ASR systems
overcomes this problem by mapping acoustic feature sequences
to word sequences directly; this is called acoustic-to-word end-
to-end speech recognition.

End-to-end speech recognition systems are based on the
simple recurrent neural network (RNN) with long short-term
memory (LSTM) architecture without requiring latent state
transition models such as Hidden Markov Models (HMMs).
There are two major approaches: connectionist temporal clas-
sification (CTC) [6–9] marginalizes and condenses all possi-
ble frame-wise output symbol sequences, while the encoder-
decoder model with an attention mechanism [10–14], first en-

codes the acoustic feature input into an intermediate representa-
tion with one RNN and then decodes it into a target symbol se-
quence with another RNN. However, many end-to-end systems
use still subword units, such as phonemes, syllables and char-
acters. Therefore, to achieve optimal performance theses still
depend on a pronunciation lexicon and language model [15],
and only slow decoding is possible.

In this paper, we deal with end-to-end systems that out-
puts whole words from audio features without requiring an
external language model. Several studies have attempted to
build acoustic-to-word models [16–21]. To build such systems,
it is essential to include other end-to-end systems that output
phonemes and subwords with high accuracy and set the ini-
tialized parameters carefully. Various training strategies have
been developed to regularize the training and prevent being
trapped in local optima, such as pre-training (PT) and multi-task
learning (MT) with linear interpolation (IP) [16, 19–24]. The
MT approach is often used to optimize the encoder shared by
CTC (sub-task) and attention-decoder (main-task), and has been
shown to be superior to single-task learning (ST). Although the
MT approach can make the shared-encoder attain better inter-
mediate representations such that the decoder can achieve lower
error rates, the shared-encoder is not directly optimized for each
task due to the averaging of the multi-task losses. We consider
that the shared-encoder should be explicitly updated for each
task loss to enhance the versatility of capturing acoustic fea-
tures.

To address this problem, we propose a data augmentation
strategy (AS) for multi-task learning. Instead of augmenting
the data by applying various kinds of signal distortions to the
input acoustic features as is often done, our idea is to augment
the training data by creating multiple copies with different la-
bels that reflect the corresponding output targets of each task.
A similar idea has been recently used in knowledge distilla-
tion [25]. They applied the AS to the multi-teacher student
approach where update is performed sequencially in each com-
putation of each teacher loss instead of using linear interpolated
losses; achieving better performance than models trained from
scratch or using interpolated loss functions.

In this paper, we propose a MT with AS for encoder-
decoder models. Our proposal uses each target loss sequentially
and updates the parameters of the shared-encoder for each loss
per minibatches. This strategy enables better learning of the
shared-encoder as each task is trained with a dedicated loss,
which is unaffected by other task losses. Experiments show the
efficacy of MT with AS and its superiority to ST and MT with
IP using various recorded Japanese speech tasks including call
center dialogue and voice search (44 to 1900 hours).

Interspeech 2018
2-6 September 2018, Hyderabad

2399 10.21437/Interspeech.2018-1866

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1866.html


2. End-to-end ASR models
We explain the two basic approaches to end-to-end speech
recognition. X = (x1, ..., xT ) and y = (y1, ..., yL) are the
input acoustic feature sequence of length-T and target label se-
quence of length-L, respectively, where yl ∈ {1, ..., K}; K is
the number of target labels. In this paper, we use characters for
CTC and words in the attention-based model as the targets.

2.1. Connectionist Temporal Classification (CTC)

CTC deals with the target labels and the extra “blank” la-
bel, ϕ, and learns the mapping between sequences of different
lengths. By inserting a blank label between two consecutive
labels and allowing each label to be repeated, label sequence
y can be expanded to a set of length-T sequences Ω(y). In-
versely, each CTC path π ∈ Ω(y) with redundancy can be
reduced to the original label sequence y after removing all re-
peating labels and blank labels, where π = (π1, ..., πT ) and
πt ∈ {1, ..., K} ∪ {ϕ}.

CTC loss is defined using the probabilities of all CTC paths
included in Ω(y) as indicated by:

p(y|X) =
∑

π∈Ω(y)

p(π|X) =
∑

π∈Ω(y)

T∏

t=1

p(πt|xt), (1)

where the posterior probabilities p(πt|xt) are calculated by a
multi-layer bidirectional RNN. The CTC loss and its gradient
with respect to the network parameters are efficiently computed
with the forward-backward algorithm. CTC-based models do
not explicitly learn the internal relationship between labels since
they assume that the probabilities of each label are independent
of others.

2.2. Attention-based encoder-decoder model

The other end-to-end ASR approach is the attention-based
encoder-decoder architecture [10–14]. This architecture is com-
posed of two distinct subnetworks. One is the encoder subnet-
work; it transforms an acoustic feature sequence into an inter-
mediate representation whose length corresponds to the length
of the input sequence, T . The other is the decoder subnetwork;
it predicts a label sequence from the intermediate information
provided by the encoder subnetwork. Decoded label length, L,
is usually less than input feature length, T . The decoder uses
only the relevant portion of the encoded sequential representa-
tions for predicting a label at each time step using the attention
mechanism.

The attention-based model is formulated as follows. The
encoder transforms X into intermediate representation vectors
H = (h1, ..., hT ). In the following decoding step, the hidden
state (memory) activation s of the RNN-based decoder at the
l-th time step is computed as:

sl = decoder
(
sl−1, gl, yl−1

)
, (2)

where gl and yl−1 denote the “glimpse” at the l-th time step and
the predicted label at the previous step, respectively. Glimpse
gl is the weighted sum of the encoder output sequence:

gl =
∑

t

αl,tht, (3)

where αl,t is the attention weight of ht. It is calculated as:

αl,t = exp(el,t)/
T∑

t′=1

exp(el,t′), (4)

el,t = wT tanh(Wsl−1 + V ht + Ufl,t + b), (5)
f l = F ∗ αl−1, (6)
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Figure 1: The overall architecture for MT in this study. Each
MT loss L of senone DNN-HMM-, character CTC- and word
attention-based models is processed by Algorithm 1 and 2 for
updating model parameter θ.

where U , V , and W represent parameter matrices, and b is a
bias vector. ∗ denotes 1-dimensional convolution and F is its
parameter. Using gl and sl−1, the decoder predicts the next
label yl; we implement this as:

yl = R tanh (Psl−1 + Qgl) , (7)
where P , Q, and R are parameter matrices.

The objective function for training the attention models
is optimized by the cross entropy loss calculated between the
predicted- and the target correct-sequences. For the acoustic-
to-word speech recognition model with attention, we use two
special labels representing the start- and end-of-sentence. The
decoder completes decoding an utterance when the end-of-
sentence is emitted. It is possible to conduct beam search to
further enhance the recognition performance.

3. Multi-task learning (MT)
Fig. 1 illustrates the overall architecture of this study. Our ar-
chitecture has one shared-encoder and three separate decoders.
The decoders output senone, character or word. In this section,
we first describe the often used conventional MT with IP, and
then explain MT with AS as our proposal.

3.1. MT with interpolation (IP)

Algorithm 1 MT with interpolation (IP)

1: for all minibatches in training data do
2: pick minibatch i;
3: for all tasks in pool of tasks do
4: select task j to compute loss Lj for minibatch i;
5: end for
6: combine loss L from all tasks with preassigned weights

λj for each task loss Lj ;
7: update neural network model with minibatch i;
8: end for

Often used MT with IP, called MT+IP, train the shared-
encoder by individual task feedback, as is described in Al-
gorithm 1. The objective function for MT is defined as the
weighted sum of the losses L propagated from all branches; it
is described as follows:

L =
∑

j

λjLj , (8)

where Lj is the loss of the j-th task, and λj ∈ [0, 1] is its in-
terpolation weight. However, this approach does not explicitly
learn each task loss due to averaging it. We want to explicitly
use individual loss for more effective parameter updating.

3.2. MT with augmentation strategy (AS)
In this paper, we propose a framework complemented with

MT and AS, called MT+AS. Instead of augmenting the data by
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Algorithm 2 MT with augmentation strategy (AS)

1: decide main-task from pool of tasks;
2: for all minibatches in training data do
3: pick minibatch i;
4: for all sub-tasks in pool of tasks do
5: select sub-task j to compute loss Lj for minibatch i;
6: update neural network model with minibatch i;
7: end for
8: select main-task to compute loss L for minibatch i;
9: update neural network model with minibatch i;

10: end for

applying various kinds of signal distortions to the input acous-
tic features as is often done, we augment the training data by
creating multiple copies of the original data that suit the targets
of each task. Also, our proposal sets the shared-encoder update
order, as is illustrated in Algorithm 2. First, we select one main-
task for the whole parameter θencoder+decoder updates. In our case,
the main task consists of the encoder-decoder for word predic-
tion. The sub-tasks consist then of the remaining tasks, here
DNN-HMM senone prediction and CTC-based character pre-
diction. For each mini-batch, we compute sequentially for each
sub-task j the loss associated with that task, Lj , and then up-
date the parameters of the model associated with that sub-task
using the error back-propagation algorithm. With this process,
the shared-encoder parameter θencoder are gradually updated by
each sub-task per minibatch. After performing the above pro-
cess for each sub-task, the same process is finally performed
for the main task. This ensures that at the end of the training
the decoder associated with the main task is optimal for that
task. We expect that our proposed training strategy will let the
shared encoder learn a better intermediate representation that
learns features common for all tasks, and that a word decoder
can benefit from such a better encoder.

4. Experiments
4.1. Data

We evaluated our proposal using three actual Japanese speech
recognition tasks: call center dialogue, and voice search task
in just clean condition and in multi-conditions of Clean, Liv-
ing room (TV chatting noise), and Kitchen (cooking and wash-
ing noise). The multi-conditions also include far-field scenario;
the distance between the target speaker to the microphone array
varies between 1 to 5 meters. The data amounts were 44, 112,
and 1900 hours for training, and 7, 2, and 12 hours for evalu-
ation. The evaluation set of voice search in multi-conditions is
split to Clean, Living room, and Kitchen tasks. For the voice
search task, the evaluation set covered the multi-conditions
of Clean, Living room (TV noise and chatting), and Kitchen
(washing and cooking noise), and balanced data wherein noisy
conditions of Living room and Kitchen were extended with
Clean. The number of symbols corresponding to the output
units were 1568, 780, and 1142 targets for characters, and 3762,
1386, and 4911 targets for words. The word vocabulary holds
words that appear more than three times. Others are treated as
OOV words (UNK). The OOV rates in test sets of call center di-
alogue, voice search on clean and multi-conditions were 1.66%,
1.37% and 0.35%, respectively. We used label smoothing for
improving generalization performance as described in [26]. The
number of senones which are generated by force alignment with
a GMM-HMM system, 3072, is common in all tasks.

Table 1: WERs [%] of Japanese call center dialogue task (44
hours). “Use Labels” means the label used for MT. Each (·) in
the MT+IP rows indicates the interpolation weight that yielded
the best result in our experiment, and ·⃝ in the MT+AS rows
represents the update order of tasks.

Approach Use Labels WERsenone character word
DNN-HMM ✓ - - 27.41
ST - - ✓ 30.41
ST + DAx2 - - ✓ 30.48
ST + DAx3 - - ✓ 30.23
ST + PT (senone) - - ✓ 28.76
ST + PT (CTC) - - ✓ 29.02
MT + IP ✓(0.5) - ✓(0.5) 27.33
MT + IP ✓(0.2) - ✓(0.8) 28.18
MT + IP - ✓(0.5) ✓(0.5) 28.12
MT + IP - ✓(0.2) ✓(0.8) 27.67
MT + IP ✓(0.3) ✓(0.3) ✓(0.4) 27.66
MT + IP (baseline) ✓(0.2) ✓(0.2) ✓(0.6) 27.14
MT + AS ✓ 1⃝ - ✓ 2⃝ 26.27
MT + AS - ✓ 1⃝ ✓ 2⃝ 25.29
MT + AS (best) ✓ 2⃝ ✓ 1⃝ ✓ 3⃝ 24.39
MT + AS ✓ 1⃝ ✓ 2⃝ ✓ 3⃝ 24.85

4.2. System configuration
The input feature was 40 dimensional FBANK with non-
overlapping frame stacking [8, 27]; three frames were stacked
and skipped to make each new super-frame. The acoustic en-
coder in the attention-based model consists of five-layers of
bidirectional LSTMs with 320 cells; the drop-out rate was
0.2 [28]. The attention-based word decoder consists of one-
layer LSTM with 320 cells, a hidden layer with 320 tanh nodes,
and a softmax output layer for word entries. The decoders of
senone and CTC are only a softmax output layer for each entry.
The weight of linear interpolation for MT+IP and the update
order for MT+AS are described in the respective Tables.

We also built a DNN-HMM hybrid system using each
dataset as baselines for comparison. The DNN-HMM system
has six hidden layers with 2048 sigmoidal nodes and a softmax
output layer with 3072 nodes. The language model was 3-gram
and trained using a 1M Japanese web text corpus. For DNN-
HMM system decoding, we used VoiceRex [29, 30].

We used the Adam optimizer with the setting described
in [31]. We also used gradient clipping with a threshold of 5.0.
The minibatch size was set to be 50 in all experiments. All net-
work parameters were initialized with random values according
to the setting in [32]. Since providing long input sequences can
slow convergence at the beginning of the training, the input data
were sorted by frame length before creating minibatches. We
used the PyTorch toolkit to train the networks [33]. In decod-
ing with the word-level attention model, we used simple beam
search with beam width of 4. We evaluated performance in
terms of word error rate (WER).

4.3. Results
Table 1 shows the ASR performance, i.e.WER, for the call
center dialogue. “DNN-HMM” represents conventional DNN-
HMM hybrid system as a refference. “ST” and “MT” indi-
cate the use of single-task learning (only word attention-based
model) and multi-task learning for training, respectively. “DA”
means usual data augmentation with simply double or triple the
amount of training data. This experiment is performed for a fair
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(a) ST (b) ST + DAx3 (c) MT + IP (baseline) (d) MT + AS (best)
Figure 2: The plot of training losses per epoch in the call center dialogue task. Each loss is normalized by the minibatch size. (a)
- (d) represent the systems in Table 1. (a) single-task learning, (b) signle-task learning with data augmentation meaning triple the
same training data, (c) conventional multi-task learning with interpolation, (d) multi-task learning with data augmentation by creating
multiple copies with different labels that reflect corresponding task output targets. The end of each epoch yielded bad loss values
because the input data were sorted by the length of frames before creating minibatches. Therefore, the bad losses in each epoch
indicate long input sequences. Our proposal “MT+AS” yielded the fastest convergence of the long sequence losses.

Table 2: WERs [%] of Japanese voice search task in clean en-
vironment (112 hours). “Use Labels” means label used for
MT. (·) in the MT+IP rows indicates the interpolation weight
that yielded the best results in our experiment, and each ·⃝ in
MT+AS rows represents the update order of tasks.

Approach Use Labels WERsenone character word
DNN-HMM ✓ - - 9.78
ST - - ✓ 10.07
ST + DAx2 - - ✓ 10.07
ST + DAx3 - - ✓ 10.18
ST + PT (senone) - - ✓ 9.58
ST + PT (CTC) - - ✓ 9.67
MT + IP ✓(0.5) - ✓(0.5) 9.77
MT + IP (baseline) ✓(0.2) - ✓(0.8) 9.68
MT + IP - ✓(0.5) ✓(0.5) 10.06
MT + IP - ✓(0.2) ✓(0.8) 9.89
MT + IP ✓(0.3) ✓(0.3) ✓(0.4) 9.71
MT + IP ✓(0.2) ✓(0.2) ✓(0.6) 9.83
MT + AS ✓ 1⃝ - ✓ 2⃝ 9.20
MT + AS - ✓ 1⃝ ✓ 2⃝ 9.37
MT + AS ✓ 2⃝ ✓ 1⃝ ✓ 3⃝ 9.19
MT + AS (best) ✓ 1⃝ ✓ 2⃝ ✓ 3⃝ 9.03

comparison with our proposal, which also augment the amount
of training data in a similar way. “PT” uses pre-trained shared-
encoder parameters with senone or character as the initialized
parameters. “IP” and “AS” represent multi-task learning strate-
gies (see in Section 3). We regard “MT+IP” as a baseline in this
paper. We can see that our proposal, “MT+AS”, is superior to
the other systems with a significant WER improvement. Both
MT+IP and MT+AS systems achieved the best WERs when us-
ing all target labels. The WER between MT+AS and simple ST
is drastically improved, by up to 19.80% relative error reduc-
tion. The relative error reduction of our proposal over the best
baseline is 8.14%. Moreover MT+AS is lower WER than DNN-
HMM in spite of the small amount of training data. MT+IP is
relatively sensitive to the choice of the interpolation weights.
MT+IP could potentially achieve lower WER with further tun-
ing, however there are infinite combination of weights possi-
ble, which makes such tuning hard. In contrast, our proposed
method only needs to tune the order of the optimization of the
sub-task, which requires only Nsub-task! trials.

Table 2 shows the WERs for the voice search task in clean
environment. We can also see that the MT+AS with all target
labels achieved the best WER. The relative error reduction of
our proposal over the best baseline using senone and word la-

Table 3: WERs [%] of Japanese voice search task in multi-
conditions of Clean environment, Living room and Kitchen as
the noisy environments (1900 hours). MT+IP and MT+AS use
all target labels.

Approach Clean Living Kitchen AVG
DNN-HMM 10.06 10.19 9.05 9.66
ST 9.41 10.03 8.80 9.20
MT + IP 8.83 9.40 8.13 8.74
MT + AS 8.05 8.92 7.78 8.10

bels, is 6.71%. Here again, all MT+AS and majority of MT+IP
approaches are suprerior to DNN-HMM.

Table 3 lists the WERs for the voice search task in multi-
conditions of Clean, Living room, and Kitchen. MT+IP and
MT+AS use all target labels. The interpolation weights for
MT+IP are senone(0.2), character(0.2) and word(0.6). The up-
date order of MT+AS is first senone, second character, and fi-
nally word model parameters. This result also shows that our
approach could attain the best WERs in all environments. The
relative error reduction of our proposal over the best baseline is
7.32%. Moreover all attention-based models are superior to the
DNN-HMM system on a large resource.

Finally, we analyze our proposal MT+AS effectiveness us-
ing the curve of training loss per epoch on call center dialogue
task illustrated in Figure 2. The end of each epoch corresponds
to the longest sentences of the training set as the sentences were
sorted by length. We can see significantly faster for long se-
quences than the baseline systems. The number of the shared-
encoder updates in MT+AS is more than ST and MT+IP. How-
ever ST+DAx3 did not converge faster than ST for long se-
quence although ST+DAx3 uses the same amount of training
data than our proposed MT+AS. We assume that the ensemble
feedbacks of each sub-task make the shared-encoder able to ex-
tract better intermediate representation, which helps training the
word-based encoder-decoder model.

5. Conclusions
We have proposed multi-task learning with augmentation strat-
egy that avoids being trapped in local optima and uses far fewer
hyperparameters than linear interpolation. Our proposal per-
forms multi-task learning with determined update order; the
model is updated using main-task loss after updating by sub-
task losses. We showed the effectiveness of the proposal in vari-
ous Japanese speech recognition tasks where it achieved the best
WERs. Comparisons with existing multi-task learning methods
demonstrated that our proposal is very effective for all tasks,
and offers the fastest convergence.
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