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Abstract
Movements of articulators (e.g., tongue, lips and jaw) in differ-
ent speaking rates are related in a complex manner. In this work,
we examine the underlying function to transform articulatory
movements involved in producing speech at a neutral speaking
rate into those at fast and slow speaking rates (N2F and N2S).
For this we use articulatory movement data collected from five
subjects using an Electromagnetic articulograph at neutral, fast
and slow speaking rates. As candidate transformation functions
(TF), we use affine transformations with a diagonal matrix and
a full matrix and a nonlinear function modeled by a deep neural
network (DNN). Since the duration of an utterance in different
speaking rates would typically be unequal, it is required to time
align the articulatory movement trajectories, which, in turn, af-
fects the TF learnt. Therefore, we propose an iterative algo-
rithm to alternately optimize for the TF and the time alignments.
Subject specific experiments reveal that while N2F transforma-
tion can be well described by an affine transformation with a
full matrix, N2S transformation is better represented by a more
complex nonlinear function modeled by a DNN. This could be
because subjects exhibit gross articulatory movements during
fast speech and hyper-articulate while producing slow speech.
Index Terms: Electromagnetic Articulography, Speaking rate,
Deep Neural Network

1. Introduction
Speaking rate is one among the many important variations in
the speaking style exhibited by humans. It is typically ex-
pressed as the number of phonemes per second [1]. Speaking
rate depends on several speaker specific factors, including, gen-
der and regional dialect [2, 3], age and mood of the speaker,
noise in surrounding environment [4] and length of the phrase
being uttered [5]. It is known that speaking rate changes several
acoustic properties such as vowel duration [6], vowel formant
frequencies [7], [8], [9], consonant-vowel co-articulation [10],
average syllable duration [11] and pronunciation [12]. Such
speaking rate specific acoustic changes pose challenges to sev-
eral speech applications including automatic speech recognition
(ASR) [13], [14], [15] that are typically designed for speech
characterized by the average speaking rate.

In addition to changing acoustic properties, speaking rate
has a direct impact on articulation. Studies report that there ex-
ists a variation in the rate of articulation, range of articulatory
movements and the degree of co-articulation [16]. For exam-
ple, in slow speaking rate, speakers tend to articulate slowly
with an increased number of pauses and hyper-articulation in
order to make speech more intelligible [17]. It is also known
that the positions of the articulators vary across fast, slow and
neutral speaking rates [18]. These results suggest that the motor
planning is different for different speaking rates such as fast and
slow [19], [20]. Although such differences in articulation strate-

gies have been reported, the relationship between the articula-
tion during neutral speech and speech in different speaking rates
remains to be examined. Understanding the nature of articula-
tory differences among speech of different speaking rates and
their inter relationships could help in developing speech based
systems that are robust to variations in speaking rate.

In this work, we consider three speaking rates– neutral (N),
slow (S) and fast (F) and examine the transformation between
the articulation 1) in N and that in F and 2) in N and that in
S. For this, we use the articulatory data collected using Elec-
tromagnetic Articulograph (EMA) [21]. We hypothesize that
examining how neutral articulatory trajectories are transformed
into those of other speaking rates could throw light in under-
standing the variations in speech production introduced by dif-
ferences in speaking rates. We use three candidate transforma-
tions, an affine transformation with a diagonal matrix, an affine
transformation with a full matrix and a nonlinear transforma-
tion modeled by a deep neural network (DNN). In order to learn
these transformations, we need to first perform a time alignment
between the articulatory trajectories of N and S; and N and F.
For this, we use dynamic time warping (DTW) [22]. For the
given time alignment via the DTW path, we find the TF. We
then refine the time alignment employing the original F (or S)
trajectories and the transformed N trajectories. In the next iter-
ation, we compute the TF once again. In this iterative fashion,
we optimize for the optimal TF and the optimal warping path
till convergence is achieved. Our experiments reveal that while
the transformation between N and F articulatory trajectories is
well represented by an affine transformation with a full matrix,
a nonlinear function modeled by a DNN better describes the
transformation between the N and S trajectories. This could in-
dicate that a slow rate of speech production, typically character-
ized by longer durations, could provide the speaker with several
degrees of freedom making the articulatory movements more
complex than those corresponding to neutral speaking rate.

2. Data Set
To perform this study, we collected articulatory movement data
for 460 English sentences spoken in three different rates : neu-
tral, fast and slow, by five subjects. The 460 phonetically bal-
anced sentences were chosen from the MOCHA-TIMIT cor-
pus [23]. Fig. 1 shows the placement [24] of nine articulators
along the mid-sagittal plane (indicated by X and Z directions)
to record articulatory movements using electromagnetic articu-
lograph AG501 [25]. We obtain 18 articulatory trajectories cor-
responding to Upper Lip (ULx, ULz), Lower Lip (LLx, LLz),
Right Commissure of Lip (RCx, RCz), Left Commissure of
Lip (LCx, LCz), Jaw (JAWx, JAWz), Throat (THx, THz)
(with the sensor placed near the laryngeal prominence), Tongue
Tip (TTx, TTz), Tongue Body (TBx, TBz), Tongue Dorsum
(TDx, TDz), for each utterance. Recorded at a sampling rate

Interspeech 2018
2-6 September 2018, Hyderabad

2992 10.21437/Interspeech.2018-1862

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1862.html


of 250 Hz, the articulatory movements known to be low pass in
nature [26], are first low pass filtered with a cutoff frequency 25
Hz and then down-sampled to 100 Hz. The five subjects under
study comprised two females (F1 and F2) and three males (M1,
M2 and M3) of age 28, 22, 19, 22 and 24 years respectively.
All subjects reported to have no speech disorders.

The recording of the sentences in the three speaking rates
for each subject was held in three different sessions. In the
first session, the subject was asked to speak in his/her nor-
mal speaking rate, from which, after silence removal, their
neutral speaking (phone) rate was computed. In the subse-
quent sessions the subjects were required to speak at 2 times
their neutral speaking rate to record fast speech and reduce
their speaking rate by half to record slow speech. Since
for utterances with a few words (typically less than five), it
would be difficult to speak at twice the neutral speaking rate,
a threshold factor of 1.3 (instead of 2) was chosen empir-
ically. The average (standard deviation) speaking rates, in
phones/sec, for S, N and F for each subject turned out to
be, 1) F1 : 6.22(±0.75), 11.79(±1.31) and 16.63(±1.57),
2) F2 : 5.60(±0.84), 9.78(±1.34) and 15.32(±1.86), 3)
M1 : 6.23(±1.08), 12.53(±1.41) and 17.12(±1.79), 4) M2
: 4.43(±0.67), 9.83(±1.23) and 14.92(±1.75) 5) M3 :
6.21(±0.85), 10.86(±1.34) and 15.07(±1.66).

Figure 1: Schematic diagram demonstrating the placement of
the nine sensors for the study

Figure 2 provides the trajectories of movement of sensors
on the jaw and tongue in the three speaking rates for a single
utterance, after mean removal. From the figure, we observe that
the time duration of the utterance spoken with a slow speaking
rate is much higher than that of neutral or fast rates. Corre-
spondingly, the duration of the recordings for the subjects F1,
F2, M1, M2 and M3 are 20.23, 24.54, 18.90, 24.38 and 21.83
minutes for neutral; 38.16, 42.71, 37.4, 54.01 and 38.15 min-
utes for slow and 14.27, 15.55, 13.8, 15.94 and 15.7 minutes
for fast speaking rates, respectively. We also observe from the
figure that the articulatory trajectories of S show more promi-
nent peaks and valleys, implying hyper articulation compared
to the articulatory trajectories of F [27, 28]. We find that articu-
latory trajectories corresponding to fast speaking rate are char-
acterized by gross movements with less variations compared to
those of N and S counterparts.

3. Learning the transformation functions
Motivated by the methodology proposed in [29], we consider
a set of M training utterances for N, F and S speaking rates,
each comprising articulatory movement data from K articula-
tors. Let R stand for either F or S rate movements. Consider
the N and R articulatory trajectory corresponding to ith train-
ing utterance to be represented by Ni ∈ RK×LNi and Ri ∈
RK×LRi , respectively. Let Ni =

[
ni,1,ni,2, . . . ,ni,LNi

]

and Ri =
[
ri,1, ri,2, . . . , ri,LRi

]
, such that ni,j and ri,j rep-

-2

0

2

JAWx

F

-2

0

2

A
m
p
li
tu
d
e
(m

m
)

N

1 2 3 4

-2

0

2

S

-5

0

5

TTz

-5

0

5

1 2 3 4

-5

0

5

Time (s)

-9

0

9

TBz

-9

0

9

1 2 3 4

-9

0

9

Figure 2: Trajectories of JAWx, TTz and TBz for the utter-
ance ‘Her classical repertoire gained critical acclaim’, by sub-
ject F1, from speech corresponding to fast (row 1), neutral (row
2) and slow (row 3) speaking rates. The highlighted boxes in
the plots indicate three exemplar phonetic units (/Ä/, /l/, /eI/).

resent the K dimensional articulatory movement vectors at the
jth time instant of the ith training utterance, corresponding to
N and R speaking rates. Since the lengths LNi and LRi need
not be equal, we time align the sequences using DTW for i =
1, . . . ,M , in order to construct parallel training data to learn
the transformation of N to R. Therefore, the TF represented by
G(·) depends on the DTW paths, {wi, i = 1, 2, . . . ,M}, used
for the time alignment. Hence, there is a need to optimize both
the warping paths and the TF by minimizing the total cost D as
follows, [

G∗, {w∗i }] = argmin
g,{wi}

D
(
g, {wi}), (1)

where, G∗(·) and {w∗i , i = 1, 2, . . . ,M} indicate the optimal
TF and the optimal set of warping paths. We consider the D,
as the sum of DTW distances (using the set of warping paths
{wi}) between the transformed N (using the TF g(·)) and orig-
inal R articulatory trajectories, across all M training utterances
as follows,

D(g, {wi}) =
M∑

i=1

Dwi

(
g(Ni),Ri). (2)

Dwi represents the squared Euclidean distance between the
DTW mapped trajectories along the warping path wi of length
Lwi , betweenRi and transformedNi. wi consists of paired in-
dices

{
wn,i(p), wr,i(p)}, p = 1, . . . , Lwi , such that wn,i(p) ∈

[1, LNi ] and wr,i(p) ∈ [1, LRi ]. Along the warping path wi,
we compute Dwi as follows,

Dwi(g(Ni),Ri) =
1

Lwi

Lwi∑

p=1

‖g(Nw,i(p))−Rw,i(p)‖2
2

(3)

where, || · ||2 denotes the L2 norm, Nw,i(p) = ni,wn,i(p)

and Rw,i(p) = ri,wr,i(p), p = 1, . . . , Lwi represent the time
aligned N and R trajectories via the DTW warping path wi.

From Eq. (1), (2) and (3) we find that in order to optimize
for the TF, we require the optimal warping paths and vice-versa.
Therefore, we perform an alternate minimization of the objec-
tive function (Eq. (1)) by alternately optimizing the TF and the
warping paths, in an iterative fashion. Given the TF g(l)(·) at
the lth iteration, we optimize for the warping paths as follows,

{w(l)
i } = argmin

wi

Dwi(g
(l)(Ni),Ri) i = 1, 2, ..,M (4)
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Given the set of warping paths {w(l)
i }, we construct N{w(l)

i }
=

[Nw(l),1, . . . ,Nw(l),M ] ∈ RK×L(l)

and R{w(l)
i }

=

[Rw(l),1, . . . ,Rw(l),M ] ∈ RK×L(l)

with L(l) =
∑M

i=1 Lw
(l)
i

.

Then the optimal TF for the (l+1)th iteration can be computed
as,

g(l+1)(·) = argmin
g

∥∥∥N{w(l)
i }
−R{w(l)

i }

∥∥∥
2

2
(5)

At each iteration l, we calculate the total cost D(l) using g(l)(·)
and {w(l)

i }, i = 1, . . . ,M in Eq. (2).
In the first iteration, we consider the TF g(0)(·) to be an

identity transformation and initialize the total cost D(0) =
∞. Using g(0)(·) we compute the optimal warping paths
{w(0)

i }, i = 1, . . . ,M using Eq. (3) and Eq. (4). Using Eq. (5)
and {w(0)

i }, i = 1, . . . ,M , we compute g(1)(·). In this man-
ner, we optimize for the TF and the warping paths till the
condition D(l) < D(l−1) is satisfied. Upon convergence, we
obtain the optimal TF, G∗(·) and the optimal warping paths
{w∗i }, i = 1, . . . ,M corresponding to the leastD. In this work,
we consider three candidate TFs 1.

(1) Full Affine Transformation Matrix, GF scheme:
We hypothesize that several articulators could be involved

in transforming one N articulatory trajectory into its R counter-
part. Therefore we learn an affine mapping betweenNi andRi.
Consider A ∈ RK×K , b ∈ R1×K and NT

{wi} ∈ RL×K , then
the optimal affine transformation can be computed as,

GF (NT
{wi}) =

[
NT
{wi} 1LX1

]
︸ ︷︷ ︸

Naug

[
AK×K

b1×K

]
. (6)

Let Raug as
[
RT
{wi} 1LX1

]
, such that Naug, Raug ∈

RL×(K+1). Then Eq. (6) can be rewritten as, GF =[
(Naug)

TNaug

]−1
(Naug)

TRaug . This is similar to the ap-
proach proposed in [30].

(2) Diagonal Affine Transformation Matrix, GD scheme:
In order to examine the effects of the transformation if we

consider only the kth N articulatory trajectory to obtain the kth

R articulatory trajectory, we modify the TF described in Section
3(1) such that A is a diagonal matrix.

(3) Non-linear transformation function, DNN scheme:
In order to consider a more complex nonlinear TF, we use

a DNN which considers NT
{wi} and RT

{wi} as the input and
output, respectively. While the DNN at the first iteration is ini-
tialized with random weights, those corresponding to the subse-
quent iterations are initialized with the weights from that of the
previous iteration.

4. Experiments
Since the articulation strategy is subject dependent [16] we
learn the optimal TFs in a subject specific manner, using a four
fold setup. We divide the data into training and test set in the
ratio 4 : 1 such that M = 345. Articulatory trajectories are
first made zero-mean. The optimal TFs are learnt separately for
N2S and N2F transformations in each of the four folds from the
five subjects. Specifically we denote G(N2F )

F and G(N2S)
F for

the TF described in Section 3(1) for N2F and N2S, respectively.
Similarly, we have G(N2F )

D and G(N2S)
D for the TF described

1Codes for GF and GD schemes are available at https://
spire.ee.iisc.ac.in/spire/software.php

in Section 3(2) and notations DNN (N2F ) and DNN (N2S) to
describe the TF described in Section 3(3). We also consider
the case when g(0) = G∗(·) is the identity matrix denoted by
G(N2F )
I , for N2F and G(N2F )

I for N2S. The input and output
feature dimensions for all the schemes are K = 18, correspond-
ing to the 18 articulatory trajectories described in Section 2.

For the DNN, we use 15% of the training set as the vali-
dation set and optimize for different parameters for each sub-
ject in every fold. Specifically, we optimize the number of hid-
den layers (candidates: 1, 2 and 3), number of neurons in each
hidden layer (candidates: 32, 64, 128, 256 and 512), activa-
tion functions corresponding to each hidden layer (candidates:
‘tanh’ and ‘relu’) and different batch size (16, 32 and 64). The
‘linear’ activation is used in the output layer. We also use batch
normalization followed by a dropout of 0.1 between the hidden
layers and between the final hidden layer and the output layer.
The implementation of the DNN is done using Keras [31] and
Theano [32] libraries.

For a given scheme, we indicate dT = [d1, . . . ,d4], where
di ∈ R1×115 consists of the DTW distances between the trans-
formed N and original R trajectories for the 115 test utterances
in the ith fold. In order to evaluate the performances of differ-
ent schemes, we report the average and standard deviation of
dT each subject. Lower the average dT for a given scheme,
better is the TF. Therefore, the best scheme is the one which
results in the least average dT .

5. Results
Across all subjects and all folds, the average number of it-
erations for estimating G(N2F )

D , G(N2F )
F and DNN (N2F ) is

found to be 6.05(±1.32), 6.65(±1.35) and 3.6(±1.27), re-
spectively. Similarly the average number of iterations for
estimating G(N2S)

D , G(N2S)
F and DNN (N2S) is found to be

6.75(±1.83), 7.90(±1.88) and 2.25(±0.55), respectively. For
the DNN based TF, the optimal DNN architecture was found
to have one hidden layer with ‘relu’ activation function using a
batch size of 64, for all subjects and folds. Out of the 20 folds
(5 subjects ×4 folds) the optimal number of neurons turned out
to be 32 for 4 folds, 64 for 10 folds, 128 for 5 folds and 256 for
1 fold for N2F conversion and 64 for 12 folds, 128 for 7 folds
and 512 for 1 fold for N2S conversion.

Table 1: Average (standard deviation) of dT (in mm) using dif-
ferent TFs for N2F transformation

Function F1 F2 M1 M2 M3

G(N2F )
I

6.51 6.60 6.71 6.00 5.64
(0.85) (1.09) (1.18) (0.93) (1.04)

G(N2F )
D

5.32 5.21 5.38 5.24 4.90
(0.66) (0.86) (0.93) (0.79) (0.94)

G(N2F )
F

4.82 5.04 4.74 4.88 4.59
(0.62) (0.90) (0.93) (0.78) (0.92)

DNN (N2F ) 4.79 5.09 4.72 4.86 4.58
(0.63) (0.93) (0.90) (0.76) (0.90)

5.1. N2F transformation

Table 1 provides the average dT obtained using the different
TFs for N2F transformation. The scheme for which average dT

is the least is indicated in bold for each subject. From the ta-
ble we observe that the relative decrease in average dT of the
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Figure 3: G(N2F )
F matrices of one fold for the five subjects.

best scheme compared to the identity TF, G(N2F )
I , is 26.42%,

23.63%, 29.65%, 19% and 18.79% for the subjects F1, F2, M1,
M2 and M3, respectively. This indicates that there indeed ex-
ist differences in the articulation strategies between the speech
production during neutral and fast speaking rates. From Ta-
ble 1 we find that the relative decrease in the average dT using
the G(N2F )

F scheme compared to that using G(N2F )
D scheme is

9.39%, 3.26%, 11.89%, 6.87% and 6.32% for the five subjects.
This implies that there is a significant contribution from several
N articulatory trajectories to transform one N trajectory into its
F counterpart.

Although for most subjects the DNN (N2F ) scheme se-
cures the least average dT , an analysis based on pairwise t-
test reveals that in 12 out of 20 folds the performance of
DNN (N2F ) scheme is not statistically significantly better than
that of G(N2F )

F scheme (0.06 ≤ p-val≤ 0.90). In 9 out of 20
folds, the DNN scheme outperforms the G(N2F )

F scheme (p-val
≤ 0.04). For subject F2, the G(N2F )

F scheme performs better
than the DNN in three out of four folds (p-val ≤ 7.18e − 05).
The comparable performance of the DNN (N2F ) and G(N2F )

F
in most folds reveals that the transformation of articulatory
movements from N to F can be represented by an affine transfor-
mation with a full matrix. We hypothesize that the transforma-
tion from N to F is not a very complex nonlinear function since
speech production in fast speaking rates results in gross articu-
latory movements (Fig. 2) compared to that in neutral speaking
rate.

Fig. 3 shows the G(N2F )
F matrices from one fold of each of

the five subjects. We observe that the matrices are not diagonal
in nature. This indicates that several articulators contribute to
transforming one N articulatory trajectory into its F counterpart.
This is supported by the observation that the average dT using
G(N2F )
D scheme is higher than that using G(N2F )

F scheme. From
the figure, it is also evident that the optimal TFs are subject
dependent. It could be due to subject specific motor control
plans to produce speech with different speaking rates.

5.2. N2S transformation

Table 2 provides the average dT obtained using the different
schemes for N2S transformation. Similar to the observations
made in Section 5.1, we find that G(N2S)

I results in the highest
average dT for all subjects. The relative decrease in average
dT using G(N2S)

F compared to that using G(N2S)
D is 12.98%,

8.30%, 7.90%, 7.10% and 7.67% for the five subjects. This
implies that for N2S transformation also, several articulators
contribute in transforming one N articulator trajectory into its
S counterpart. From the table we see that the DNN (N2S)

scheme outperforms all other schemes (bold entries). Analy-

Table 2: Average (standard deviation) of dT (in mm) using dif-
ferent TFs for N2S transformation

Function F1 F2 M1 M2 M3

G(N2S)
I

6.46 8.27 7.32 6.03 6.30
(0.90) (1.27) (1.07) (0.77) (0.89)

G(N2S)
D

5.93 8.14 6.90 5.76 6.12
(0.91) (1.24) (1.02) (0.75) (0.87)

G(N2S)
F

5.16 7.46 6.35 5.35 5.65
(0.87) (1.13) (1.02) (0.71) (0.81)

DNN (N2S) 5.05 7.37 6.30 5.35 5.52
(0.89) (1.11) (1.03) (0.75) (0.80)

sis for significance test using pairwise t-test reveals that in most
folds (15 out of 20) the DNN (N2S) exhibits statistically sig-
nificantly lower (p-val ≤ 0.0095) DTW distances between the
transformed N and original S articulatory trajectories compared
to the G(N2S)

F scheme. It could be that an affine function with a
full matrix cannot capture the complex transformation between
N and S better than a highly nonlinear TF modeled by a DNN.
Interestingly, we find that the average dT values are higher for
N2S transformation (Table 2) than that for N2F transformation
(Table 1). This could be due to 1) the increase in DTW distances
with increase in the duration of the articulatory movements in
slow speech compared to that in fast speech and 2) a more com-
plex transformation involved in N2S than in N2F, which in turn,
could be due to the fact that subjects to tend to hyper-articulate
while speaking slowly [17].

6. Conclusion
In this work, we examine the function that transforms articu-
latory trajectories of neutral speech into those of fast and slow
speech. We find that the transformation of N to F articulatory
movements can be well represented by an affine function with
a full matrix, indicating that several articulators contribute in
transforming one N articulatory movement into its F counter-
part. For the N2S transformation, we observe that a DNN pro-
vides the best TF. This could be due to the hyper-articulation ex-
hibited in slow speech. Our future work includes 1) performing
a suitable time scaling of the transformed neutral articulatory
trajectories to match the duration of those from different speak-
ing rates in a subject independent manner, and 2) analyzing the
effects of sentence stress on the articulation in different rates.
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