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Abstract

This paper presents a simple but effective method for generating
speech waveforms by selecting small units of stored speech to
match a low-dimensional target representation. The method is
designed as a drop-in replacement for the vocoder in a deep neu-
ral network-based text-to-speech system. Most previous work
on hybrid unit selection waveform generation relies on phonetic
annotation for determining unit boundaries, or for specifying
target cost, or for candidate preselection. In contrast, our wave-
form generator requires no phonetic information, annotation,
or alignment. Unit boundaries are determined by epochs, and
spectral analysis provides representations which are compared
directly with target features at runtime. As in unit selection, we
minimise a combination of target cost and join cost, but find
that greedy left-to-right nearest-neighbour search gives similar
results to dynamic programming. The method is fast and can
generate the waveform incrementally. We use publicly available
data and provide a permissively-licensed open source toolkit for
reproducing our results.

Index Terms: speech synthesis, vocoder, unit selection

1. Introduction

We present a waveform generation module which can be
dropped in to a statistical parametric text-to-speech (TTS) syn-
thesis system to turn it into a ‘hybrid’ synthesiser. By hybrid,
we mean that waveforms are produced by waveform unit selec-
tion and concatenation, but that the selection is guided by the
output of a high quality acoustic model. Typically, the acous-
tic features used to guide selection could themselves be passed
through a vocoder to produce a stable, intelligible and reason-
ably natural-sounding waveform. Until recent developments in
the direct time-domain prediction of waveforms, such hybrid
systems were the state of the art in natural-sounding speech
synthesis, and they are still a dominant form of synthesiser in
commercial applications.

See [1, §4] for a review of hybrid approaches where selec-
tion is guided by hidden Markov model (HMM)-based synthe-
sis, as well as more recent work where the predictions of neural
networks guide selection [2, 3, 4]. In the majority of this work,
the speech units selected are relatively large, phonetically de-
termined units, such as diphones and halfphones. The current
work aims to use smaller units which can be determined with-
out phonetic annotation. There are several possible benefits to
this: it means the unit selection module can be agnostic about
the symbolic content of speech to be synthesised in the same
way as a vocoder, it opens up the possibility of simply sharing
unit databases across dialects and languages, and systems se-
lecting smaller units are conceivably less susceptible to degra-
dation due to inadequate amounts of data and poor annotation.

Links to audio samples, code and data for recreating the sys-
tems described here can be found at https://github.com/
CSTR-Edinburgh/snickery.
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Some work has experimented with small units determined with-
out phonetic alignment — these have always been fixed Smsec
frames of speech [5, 6, 7, 8, 9]. However, many of these ap-
proaches then use phonetic identity of the segment from which
a frame is taken for use in pruning strategies to reduce the com-
putational expense of search. The most similar work to that pre-
sented here is [6, 7] where no phonetic annotation is assumed (in
the second case due to the need to operate between languages).

Our work is different from most previous work in that we
make no reliance on phonetic labels. It differs from all previ-
ous work (including [6, 7]) in that no use is made of dynamic
programming for unit selection: we find greedy search to be ef-
fective. Furthermore, we select units whose temporal bounds
are defined by knowledge of speech structure: we select units
pitch synchronously rather than using an arbitrary frame size in
voiced regions.

It is interesting to consider the system presented here as
a generic data-driven waveform reconstruction method. Re-
cent work has shown that statistical models can be trained to
predict acceptable sequences of waveform samples either from
discrete linguistic features or from intermediate acoustic rep-
resentations [10, 11, 12]. This latter so-called neural vocoder
approach — where inputs consist of acoustic features — is sim-
ilar to exemplar-based waveform generation in that it aims to
reconstruct a waveform in a data-driven way given underspeci-
fied inputs. Inputs are typically underspecified in that phase is
missing, and the magnitude spectrum is compressed and sim-
plified to some degree [12, 13]. In these cases, phase and mag-
nitude spectral detail can be restored in a data-driven fashion,
as in the case of the exemplar-based method described here.
Furthermore, it has been shown [12, §3.3.1] that when work-
ing from imperfectly predicted acoustic representations, neural
vocoders can compensate for this imperfection if trained with
inputs degraded in a consistent way. Similar matched train-
ing has been used also in the exemplar-based case [8, §IIB].
As well as benchmarking our system against commonly used
vocoders on a simple copy synthesis task, we also explore a
variant of such matched training in the current work, by manip-
ulating vocoder parameters to bear some of the characteristics
of synthesised speech. This allows us to compare our system’s
robustness to that of a vocoder synthesise module when pro-
cessing speech containing TTS-like degradation.

2. Proposed system

The task performed by the module at synthesis time is to gen-
erate a waveform consistent with a given sequence of feature
vectors. As with the inputs to the synthesis module of a stan-
dard vocoder, this sequence might be predicted by a statistical
model (as part of e.g. a TTS or voice conversion system), or
could simply be extracted from natural speech. In all cases, we
term this the target sequence. For each vector ¢} in the target se-
quence, an exemplar is chosen by searching a database of units,
and finally the exemplars chosen to cover each vector in the tar-
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get sequence are joined to produce a speech waveform. As with
other unit selection approaches, the goal of database search is
to select a sequence of units to minimise a cost which incorpo-
rates two types of constraint. Firstly, each unit should be sim-
ilar to the acoustics encoded by the target vector (divergence
is penalised by the farget component of the cost); secondly,
neighbouring selected units should be acoustically compatible
in order to minimise audible artifacts when they are joined (in-
compatibility is penalised by the join component of the search
cost). The target and join components can also be thought of
as fidelity and fluency measures: the first scores how faithfully
the message encoded by the target sequence is rendered, and the
second, how fluently this is done.

2.1. Database preparation

The unit database is prepared by acoustically analysing a cor-
pus of (possibly untranscribed) speech. This is done pitch syn-
chronously: analysis starts by placing pitchmarks at estimated
instants of glottal closure in voiced speech and at Smsec in-
tervals elsewhere. Spectral features characterising the speech
around each of these pitchmarks are then obtained, either
through pitch-synchronous analysis (as in the experiments re-
ported below, where we use MagPhase [14] to perform analysis
pitch synchronously, which in turn relies on REAPER [15] for
pitch marking) or by linearly interpolating fixed frame-rate fea-
tures so that the resulting feature vectors are centred on pitch-
marks. We henceforth use the term frame to denote pitchmark-
centred feature vectors, following [14].

From this analysis, two representations are derived for each
pitchmark ¢ for use in search: a target representation ¢; and
a join representation j;, used for the target and join parts of
the search cost, respectively. At time step ¢ when synthesising
speech for a novel target sequence, a suitable unit is chosen by
considering each unit ¢ in the database and comparing:

1. the target representation t; of the candidate unit with the
target vector t; at time ¢ and

the join representation j;—1 of the unit preceding the
candidate unit in the database with what can be regarded
as the search history: the join representation of the unit
chosen at synthesis time ¢t — 1.

Note that the second comparison will be between identical vec-
tors in the case that a unit is considered that is naturally con-
tiguous with the previous unit selected, and so the comparison
has the desirable property that the distance between these two
vectors will be 0 in such cases.

As these two types of comparison will be made jointly — and
units chosen greedily — at each synthesis time step, for conve-
nience a combined representation c¢; is constructed at database
preparation time for each unit ¢ in the database by concatenat-
ing the join representation of the preceding unit in the database
Ji—1 with the target representation of unit ¢, itself:

ci =gl ]

A third type of representation w; is also stored for unit ¢. This
will be concatenated to produce the generated waveform, and
might consist of a fragment of time domain signal or some
other lossless or high-fidelity representation of that signal. In
our experiments, we store and retrieve high-dimensional Mag-
Phase representations of those fragments (in contrast to the low-
dimensional MagPhase features used for search), as this allows
us to reconstruct the signal at the same time as applying Fo ma-
nipulation and spectral smoothing at joins.
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Figure 1: Exemplar-based synthesis.

2.2. Exemplar-based synthesis

Given a database populated in this way, synthesis proceeds as
illustrated in Fig. 1. At synthesis time step ¢, a combined rep-
resentation ¢} is prepared by concatenating a history vector and
current target vector t;. Then the index s; of the unit selected
at time ¢ is determined as:

s¢ = argmin D(c;, ;)
i

where D(-, -) denotes Euclidean distance. The history vector h
is updated to js,, and search moves to the next timestep ¢ +
1. On the assumption that any sequence to be synthesised will
start with silence, the history vector h is initialised as a join
representation of a frame of acoustic silence.

The result of this search is a sequence of indices which al-
low the retrieval of the portion of acoustics us, associated with
each selected unit s; and to generate a waveform. In our im-
plementation this is done after search has finished, but as the
search requires no lookahead, in principle the concatenation can
be done incrementally as search progresses.

Note that the search is conducted in a greedy fashion: a
fixed decision is made at each time step to use the single near-
est neighbour in the database. We have experimented also with
more conventional dynamic programming solutions, where tar-
get cost and join cost are jointly minimised over a lattice con-
structed using a number of candidate units at each time point.
However, informal evaluation suggested that the greedy ap-
proach gives comparable results, and as it also has the bene-
fits of simplicity and lack of look-ahead, we have decided to
focus exclusively on this approach in the present work. We sup-
pose that greedy search is sufficient in our case as the fragments
selected by our system are not long enough that feature trajec-
tories can stray far from the target sequence in the course of a
single unit.

2.3. Generalisation to multiple epochs at each timestep

So far we have considered the case where a single epoch is se-
lected at each synthesis timestep, i.e. the waveform is generated



by concatenating 1-epoch fragments. While this results in intel-
ligible speech, we have obtained better results by selecting an
m-epoch chunk of speech at each timestep, where m > 1. The
following changes are made to database preparation and synthe-
sis routine to achieve this. The combined representations c¢; of
database unit 7 is obtained as follows:
C; = [J;rfm t;!-fm+1 t;I']T

Note that most epochs therefore appear in m combined repre-
sentations (i.e. the longer units defined in this way overlap tem-
porally in the training database).

At synthesis time, the combined representation c; at time
t when simultaneously selecting m epochs is prepared by con-
catenating the history vector h and target vectors t;_,, ... t;.
At each iteration, the history h is then updated to j;, and the
time index is then incremented from ¢ to ¢ + m. That is, con-
tiguous sections of speech consisting of m epochs are concate-
nated in a non-overlapping fashion, and the join comparison is
made between single frames of join representation features at
unit boundaries, as illustrated in Fig. 2 for m=3.

Typical settings of m we have used are between 2 and 8.
In effect, this corresponds to selecting longer units from the
database, and there will be at most a single concatenation ev-
ery m synthesised pitchmarks. While both the greedy and dy-
namic programming methods with which we have experimented
in principle allow such sequences of units to be selected, in
practice we have found that explicitly adding the constraint that
each non-overlapping subsequence of m units should be se-
lected contiguously results in the discovery of perceptually bet-
ter unit sequences.

2.4. Target and join representations

So far, nothing specific has been said about the representations
used for target and join components of the cost. Typically, sev-
eral ‘streams’ of acoustic features will be used to build both the
target and join representations for a unit. The target represen-
tation must contain enough detail to guide the selection of ap-
propriate fragments of speech, and the join representation must
contain enough information to determine whether a given pair
of units can be combined smoothly. While the two represen-
tations could in principle be identical, an important distinction
is that the join representations of natural units in the database
will only ever be compared with other natural units, whereas
the target representations stored in the database can be com-
pared with synthetic target sequences. This suggests that more
compact representations, and ones which average more sensi-
bly, might be preferred as target representation. It also suggests
that performance might benefit from corrupting the database tar-
get representations in a way that is consistent with the kind of
corruption envisaged at synthesis time (see Section 3).

In the experiments presented here, we use logarithm of fun-
damental frequency (logFg) and 60-dimensional mel-warped
log magnitude spectrum extracted pitch-synchronously by the
MagPhase vocoder [14] as streams in our target representation,
but many other choices are possible. For the join representation,
we supplement those streams with the two streams of phase fea-
tures extracted by MagPhase. Note that while our target repre-
sentation contains no phase information, the inclusion of phase
in the join representation means that we expect unit selection
to yield a sequence of speech fragments which are compati-
ble in terms of phase. In turn this means that any TTS system
whose predictions are used to guide unit selection need not out-
put phase information (cf. WORLD [16]).
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Figure 2: Generalisation to multiple epochs.

2.4.1. Standardisation

The separate streams’ features are standardised, weighted and
concatenated to yield either target or join representations. When
a stream of features is standardised, means over the whole
database are computed per coefficient so that the standardised
values will all have zero mean, but a single standard deviation
value is used to scale all coefficients in each stream. This is
motivated by the assumption that each of the streams we have
chosen to use has been designed in such a way that the rela-
tive dynamic range of coefficients in a stream is proportional
to their relative perceptual importance, and we wish to preserve
these difference of range in the standardised values.

Unvoiced frames of Fy and logFy are ignored when com-
puting means and standard deviations. Unvoiced values are also
treated specially when streams are standardised — they are as-
signed a negative value whose magnitude is given by multiply-
ing the feature’s standard deviation by a constant factor (set to
20). The motivation here, following [17] is that we wish to:
penalise differences between voiced values as normal but also
place no Fy penalty on comparisons between unvoiced features
and place a large penalty on comparisons between voiced and
unvoiced features.

2.4.2. Weighting

Features’ contributions to selection costs can be modified by
weighting. Weights are applied stream-by-stream rather than
coefficient-by-coefficient. This is both to reduce the number of
parameters which must be manually adjusted, and also follows
the logic outlined in Section 2.4.1: we expect streams to have
been engineered in such a way that the component coefficients’
relative dynamic ranges (and therefore their contribution to a
Euclidean distance) reflect relative perceptual importance.

We configure the stream weights as follows. Firstly, for
both target and join costs, we set stream weights so that they
sum to 1. The join representation is then scaled globally by a
factor o, where 0 < o < 1, and the target representation is
scaled by 1 — a. As in other approaches to unit selection, this
allows us to strike the right balance between fidelity and fluency.

3. Experiments

We present the results of an experiment where the conditions
summarised in Table 1 were compared side by side.

The experiment has two goals; firstly, we wish to bench-
mark the quality of speech synthesised by the proposed sys-
tem against the speech reconstructed by two freely-available
vocoders in a simple copy synthesis task (i.e. where vocoder
features and unit selection target features are extracted from nat-
ural speech and used directly). This can be done by comparing
conditions W0, MO and SO.

Secondly, although we leave the integration of our wave-
form generator into a full TTS system for future work, we wish



Table 1: Experimental conditions.

System  Description Smoothing
N Natural speech None
WO Vocoded speech WORLD [16] None
MO Vocoded speech MagPhase [14] None
SO Proposed system None
M1 Vocoded speech MagPhase [14] slight
S1 Proposed system slight
M2 Vocoded speech MagPhase [14] extreme
S2 Proposed system extreme

to ascertain how robust the proposed method is to degradations
of the input data of the sort which would be expected in a TTS
system. For this purpose, target features were degraded in a
way consistent with the effects of prediction from text; follow-
ing [18], degraded features were created by smoothing the orig-
inal target features with a 5-frame Hanning window followed by
scaling their standard deviations to either 80 % (slight smooth-
ing) or 60 % (extreme smoothing) or the original. To limit the
number of conditions to be compared to manageable numbers,
this processing was applied to features from only one of the two
vocoders used (MagPhase).

3.1. Database, proposed system and baselines

We used a dataset of recordings of the speech of a male native
English speaker sampled at 48 kHz. To construct the proposed
system we used 2004 sentences (containing 83 minutes of au-
dio) for creating the unit database and 19 other sentences for
some limited system tuning. This results in a database with ap-
proximately 750,000 units. A single configuration of the system
was used for all of conditions SO, S1 and S2 as follows. Uni-
form stream weights were used for the join and target represen-
tations, but the influence of the join component of the cost was
reduced by setting « to 0.2. The number of frames selected si-
multaneously m was set to 6, and selected units were extended
by 1 frame on either side to allow 2 frames of cross-fade to
be applied to the spectral representations from which speech
is resynthesised. The target Fy was imposed on selected units
when speech was resynthesised with MagPhase. The combined
representations of our database were indexed with a k-d tree for
efficient approximate search. Although our implementation is
in many ways naive and we leave efficiency improvements for
future work, we are able to synthesise speech faster than real
time on a large memory server (excluding the overhead of load-
ing the model at the start of a synthesis session).

We created the WORLD vocoder [16] baseline by us-
ing the version of the vocoder distributed with the Merlin
toolkit [19]. With it we extracted 60 Mel cepstral coefficients
and 5 band aperiodicities; Fo was extracted using REAPER
[15]. WORLD’s synthesis module was then used to reconstruct
speech from these three acoustic streams.

The MagPhase baseline was created using the MagPhase
vocoder implementation released in [14]. Using this we ex-
tracted 60 magnitude, 45 imaginary and 45 real features. Fo
was extracted using REAPER [15]. Speech was reconstructed
from these four acoustic features.

3.2. Listening experiment design

We conducted a MUSHRA-style test [20] with 21 screens. On
each screen participants could play the audio produced by dif-
ferent systems for the same sentence. Listeners were asked to
rate the quality of the samples on a scale from 0 (bad) to 100
(excellent). The first screen was used only for training partic-
ipants. A different sentence was used for each screen. Across
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Figure 3: Boxplot of listening test scores.

every five participants, 100 different sentences were used. Nat-
ural speech was included on each screen so that participants
would have a quality reference and to check if participants paid
sufficient attention to score it as 100 as instructed. We recruited
20 native English speakers. We excluded 13% of screens where
listeners did not give natural speech (the reference) the high-
est score (as instructed). Three participants were excluded who
rated N less than 100% in more than 25% of screens.

3.3. Results

A boxplot of the results is presented in Fig. 3. Solid and dashed
lines indicate the median and mean values of each distribution.
To test if differences were significant, we used a Mann-Whitney
U test, at a p-value of 0.05, and with a Holm Bonferroni correc-
tion due to the large number of pairs to compare. All systems
were perceived to be significantly different from each other.

As illustrated in Fig. 3, MagPhase (MO) obtained the high-
est mean scores, followed by World (W0) and the proposed sys-
tem (S0). This result is unsurprising as WORLD - in contrast
to MagPhase — relies on the minimum phase assumption. Re-
sults of the smoothed conditions (1,2) show a different trend.
When features are smoothed, MagPhase scores suffer consid-
erably more than our system’s, to the extent that our system
outperforms the vocoder in the degraded conditions.

4. Conclusions

We have proposed a new method for generating speech wave-
forms from low-dimensional target acoustic representations. To
generate speech we select small units from a database in a
greedy fashion which enables incremental generation. Unlike
a vocoder, our method has the potential to compensate for the
kind of degradation observed in acoustic representations pre-
dicted by statistical models. In contrast to most exemplar-based
systems, our method does not require data with phonetic level
annotation as units are not defined by phone boundaries, but
by pitchmarks automatically extracted from speech. We ob-
serve that when the low-dimensional representation is derived
from natural speech directly, our method is outperformed by
two state-of-the-art vocoders; however, the performance of our
method degrades more gracefully as the amount of imperfec-
tion imposed on the inputs features is increased. We believe
results can be improved by using representations that average
more sensibly, and by much more careful condition-dependent
tuning of our system.
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