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Abstract 

The development of automatic systems that can detect 

replayed speech has emerged as a significant research 

challenge for securing voice biometric systems and is the 

focus of this paper. Specifically, this paper proposes two novel 

features to capture the static and dynamic characteristics of the 

signal from the modulation spectrum, which complement short 

term spectral features for use in replay detection. The 

modulation spectral centroid frequency feature is proposed as 

a vector representation of the first order spectral moments of 

the modulation spectrum. In conjunction to this, the long term 

spectral average serves to capture the static characteristics of 

the modulation spectrum. The proposed system, employing a 

GMM back-end, was evaluated on the ASVSpoof 2017 dataset 

and found to yield an EER of 6.54%. 

 

Index Terms: speaker verification, spoofing detection, score 

fusion, spectro temporal features, modulation spectrum  

1. Introduction 

Automatic speaker verification (ASV) has undergone rapid 

improvements in the recent decade but continues to show high 

vulnerability to spoofing attacks. Spoofing methods are 

categorized as speech synthesis (SS), voice conversion (VC), 

impersonation and replay [1]. Among these, replay attacks are 

arguably the most common ASV spoofing technique as they 

do not require the attackers to have any specialised 

knowledge, and can be mounted with relative ease using 

consumer devices. Countermeasures against replay attacks 

generally aim to exploit either the fact that replayed speech 

would be an exact reproduction of a previous speech 

utterance, differences in the speech transmission channel, or 

differences in the spectral properties of replayed speech. 

Playback audio detectors that successfully detect spoofing by 

comparing a new recording with previous attempts are 

described in [2]. Further approaches involve distinguishing 

between the transmission channels of genuine and replayed 

speech such as the detection of pop-noise [3], acoustic channel 

artefacts [4], and detection of far-field recording [5]. The short 

term features derived from linear filter banks (rectangular 

filter cepstral coefficients, spectral centroid magnitude 

coefficients [6], and instantaneous frequency features [7]), or 

from linear scaled spectrograms ( single frequency features [8] 

and light CNN features [9] ) have been shown to be superior 

to frequency warped features (constant-Q cepstral coefficients 

[10], inverse Mel frequency cepstral coefficients [11, 12]). In 

addition, different variants of neural network (NN) based 

systems [9, 13, 14] have also been investigated. Further 

appending the velocity (delta) and acceleration (delta-delta) 

features, which capture short-term dynamics between the 

nearest frames, have been shown to be beneficial. The fusion 

of different types of features and systems can also improve the 

results [6, 9, 15].  

Moreover, long-term spectral statistics have also been 

shown to be helpful in replay attack detection [16]. However, 

the long-term spectro temporal dynamics is affected by noise 

and reverberation [17, 18, 19, 20] and has not been fully 

explored in the context of replay attack detection. Thus, in this 

paper, we mainly focus on long-term temporal dynamic 

information obtained from log spectrograms in terms of a 

modulation spectrum [18]. The motivations behind this work 

are: (1) the artefacts in long-term dynamics are not well 

captured by the short-term features, hence incorporation of a 

modulation spectrum’s static and dynamic information would 

be beneficial; and (2) the modulation spectrum has been 

shown to be affected by reverberation and noisy conditions 

such as ambient noise and convolutional noise, which could be 

useful for replayed speech detection. Our final proposed 

system also incorporates a short term spectral feature to 

complement the modulation spectrum based features. 

2. Features 

2.1. Joint Acoustic Modulation Spectrum based features 

2.1.1. The Motivation 

The modulation spectrum characterizes the dynamics of the 

spectral content of the speech signal over a long duration. The 

modulation spectrum is also known to be a good indicator of 

speech intelligibility [19, 21], voice quality [18] and channel 

variability [17, 22]. We expect that replayed signals would 

include noise and reverberation, leading to a flatter modulation 

spectrum. The use of the modulation spectrum in synthesized 

speech detection has been previously investigated and shown 

to be promising [23]. 
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Figure 1: Computation of short term log spectrogram (left), 

and joint acoustic modulation spectrum (right). Regions of 

representing static (green) and dynamics characteristics 

(orange) are indicated. 

Interspeech 2018
2-6 September 2018, Hyderabad

691 10.21437/Interspeech.2018-1846

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1846.html


2.1.2. Joint Acoustic Modulation Spectrum 

While a number of variations of the modulation spectrum have 

been proposed over the years [17, 20, 24, 25, 26], in this work 

we employ the ‘Joint Acoustic Modulation Spectrum’, as 

illustrated in Figure 1 (similar to that employed in [26, 27]).  

Specifically, it is estimated by taking the magnitude of the 

Discrete Fourier Transform (DFT) along time in a log 

magnitude spectrogram. 

        In the literature, two types of modulation spectra have 

been used: (a) the segment wise modulation spectrum, which 

is computed over a fixed number of frames; and (b) an 

utterance level modulation spectrum, which is calculated over 

all the frames in the speech utterance [28]. We use the latter 

approach since we are interested in the statistical effects 

present due to replay (transmission channels) that might 

present throughout the utterance. The utterance level 

modulation spectrum also leads to features that are more 

compact and independent of the length of the utterance. 

 

 
 

Figure 2:  Comparison of normalized modulation spectrum for 

genuine and replayed speech utterances of, “Birthday parties 

have cupcakes and ice cream”.  The 0th modulation bin is 

suppressed to highlight dynamic variations elsewhere. 

 

 
 

Figure 3:  Average Modulation Spectrum of genuine and 

spoofing utterances computed using the training set of 

ASVSpoof 2017 dataset. The 0th modulation bin is suppressed 

to highlight dynamic variations elsewhere.  

2.1.3. Parameter Selection and Comparison  

The modulation spectrum was computed by initially 

estimating a spectrogram using 20ms hamming windows with 

50% overlap after pre-emphasis of the speech signal with a 

1024 point DFT. A second DFT is employed to obtain the 

modulation frequencies, employed as many points as there 

were frames in the utterance. As a result of the initial 

windowing, the highest modulation frequency present was 

50Hz.   

      The modulation spectrum energy was normalized to 

maintain norms across utterances of different lengths. Figure 2 

compares the joint acoustic modulation spectrum of a genuine 

speech utterance to that of a replayed version of that utterance. 

Replayed speech has variations in modulation components due 

to channel variations present in replayed speech. In addition, 

Figure 3 compares the average modulation spectrum estimated 

across all genuine speech in the training set to the average 

modulation spectrum across all spoofed speech in the training 

set. It is evident from this figure that there are differences in 

the total distribution of energy in the modulation spectrum 

between genuine and replayed speech, perhaps due to 

additional transmission channels present in replayed speech. 

Further differences in high acoustic frequency regions (i.e. the 

modulation energies) may be due to non-linearities at high 

frequencies in low quality playback and recording devices 

[11]. We propose two novel features to capture the static and  

dynamic characteristics of the signal from the modulation 

spectrum. 

2.1.4. Proposed Modulation Spectrum Based Features 

As depicted in Figure 4, we propose two novel features which 

are derived from the modulation spectrum (refer Figure 1), 

referred to as MCF-CC and MSE-CC. The modulation 

centroid frequency (MCF) computes the spectral centroid 

within each acoustic frequency bin to capture the modulation 

energy variation within. The spectral centroid (the first 

moment in the spectral domain) is a statistical measure which 

calculates the mean frequency [29]. This feature compactly 

represents the spread of energy across the modulation 

frequencies and is expected to capture the variation of 

modulation peak energy within acoustic frequency bins. The 

modulation centroid frequency (MCF) of the 𝑘𝑡ℎ acoustic 

frequency is 

 

                  MCF𝑘 = 
∑ 𝑆𝑘 (𝑚)∙𝑚50

𝑚=1

∑ 𝑆𝑘 (𝑚)
50

𝑚=1

                           (1) 

 

where 𝑘 is the acoustic frequency bin index, 𝑚 is the 

modulation frequency bin index, and 𝑆𝑘 (𝑚) is the normalized 

modulation energy (i.e. magnitude) corresponding to 𝑘𝑡ℎ  

acoustic frequency and  𝑚𝑡ℎ modulation frequency. The 

discrete cosine transform (DCT) is applied across the 

modulation centroid frequencies to create a compact utterance 

level feature, referred to as the MCF cosine coefficients 

(MCF-CC), as shown in Figure 4. The MCF-CC feature 

represents the utterance level dynamic information contained 

in the modulation spectrum.  
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Figure 4:  MCF-CC and MSE-CC feature extraction from a 

modulation spectrum. 

 

As illustrated in Figure 4, the 0th modulation bin energies 

(𝑚 = 0) of the normalized modulation spectrum along the 

acoustic frequencies are retained as a feature vector, which we 

refer as named as modulation static energy (MSE), as 
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                             MSE𝑘 = 𝑆𝑘(0)                                    (2) 

 

where 𝑘 is the acoustic frequency bin index. Conceptually 

MSE carries the DC component information of the temporal 

trajectories of the log spectrogram. The DCT was performed 

to reduce the dimensionality of the MSE and gives rise to the 

compact MSE cepstral coefficient (MSE-CC) features. The 

MSE-CC features represent the utterance level static 

information from the modulation spectrum. It should be noted 

that mean normalization is not carried out at any stage. 

2.2. Short Term Cepstral Coefficients (STCC) 

In addition to the proposed modulation based features, we also 

estimate short term frame based features to complement the 

information extracted from the modulation spectrum. These 

features are extracted from the log spectrogram. Specifically, 

the first few DCT coefficients of the log magnitude spectrum 

from each frame are extracted as short-term features and 

herein referred to as short term cepstral coefficients (STCC). 

3. Development and Experimental Setup 

3.1. Dataset 

The ASVSpoof 2017 version 1.0 dataset consisting of genuine 

recordings and their replayed versions as spoofed speech is 

used for our evaluations [30]. The dataset consist of three non-

overlapping sets for training, development and evaluation. We 

used the development (dev) set to tune the system and the 

pooled set (train and dev) is used to train the genuine and 

spoof models for final evaluation. 

3.2. Feature extraction  

We carried out the experiments on 15, 30, 50 and 100 

dimensions (the number of retained DCT coefficients) to 

determine the most informative dimensions by tuning on the 

development set. MCF-CC and MSE-CC features are chosen 

with 15 and 30 dimensions respectively. The STCC features 

are chosen to have 30 dimensions and are appended with their 

velocity and acceleration coefficients. Cepstral mean variance 

normalization (CMVN) is carried out for the STCC features.  

3.3.  Classifier 

A Gaussian mixture model (GMM) back-end was employed 

for genuine and spoofed speech detection, which remains the 

de-facto technique [6, 9]. The GMMs were trained using the 

expectation maximization (EM) criterion to obtain the 

maximum likelihood estimate with random initialization. The 

number of Gaussian mixtures components for MCF-CC, 

MSE-CC and STCC were chosen as 4, 4 and 512 respectively, 

determined on the dev set.  

3.4. Score and feature level fusion 

The features associated with each method are expected to be 

complimentary to each other and score level fusion was 

performed using the BOSARIS toolkit [31]. Linear fusion 

parameters are learned from the development set. Feature level 

concatenated feature (15 dimension of MCF-CC and 30 

dimension of MSE-CC) was also investigated for the two 

proposed modulation features using a 4 mixture GMM back-

end as they are extracted from two non-overlapping regions 

from the modulation spectrum. 

4. Results & Discussion  

We present the results of our proposed systems on ASVSpoof 

2017 version 1.0 corpus [30] to compare with baseline 

systems evaluated in this dataset. Henceforth S1, S2 and S3 

refer to systems using MCF-CC, MSE-CC and STCC features, 

respectively (see Table 1). We also present our proposed 

system evaluation results on  ASVSpoof 2017 version 2.0 

corpus with latest protocols [10]. A subsequent ASVSpoof 

2017 version 2.0 [10] was released in early 2018 to fix the 

data anomalies detected in the version 1.0 of the corpus. In 

addition, meta data which describes the playback device, 

recording device and the different acoustic environment 

condition used in the evaluation set is also released. All results 

are provided on ASVSpoof 2017 version 1.0 dataset except 

where noted. 

     Two dimensional t-SNE projections of both modulation 

features are shown in Figure 5. Both the features show 

discrimination ability between genuine and spoofed speech. 

The distribution of the evaluation scores for the individual (S1 

and S2) and fused systems (S1+S2 at feature and score levels) 

are shown in Figure 6. Both features are highly 

complementary and benefit from fusion at both feature and 

score levels. Scatter plots of the evaluation scores, shown in 

Figure 7, were investigated to study the complimentary 

information present in system S1 with  S2 and S3. The regions 

of interest are Regions I and II (R1 and R2), which correspond 

to an incorrect classification (false acceptance and miss rate). 

Systems S1 and S2, or S1 and S3 together are more robust and 

have high complimentary information (i.e. misclassification in 

S1 is complimented by S3 to make the correct decision and 

vice-versa.). 

 
s 

Figure 5: t-SNE two dimensional feature space of MCF-CC 

(left) and MSE-CC(right) of genuine (orange) and spoofed 

(green) speech on the training set. 

 

 

Figure 6: Evaluation score histogram distribution for systems 

S1, S2, S1+S2 Concat (feature fusion), and S1+S2 (score 

fusion), for genuine (orange) and spoof (green) trials. 
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Figure 7: Scatter plot of system evaluation scores for genuine 

(orange) and spoofed (green) utterances: systems S1 vs S2 

(left) and S1 vs S3 (right). Vertical and horizontal lines 

indicate the decision threshold for the relevant system. 

 

    Table 1 presents the performances of the individual systems 

on the evaluation set in terms of equal error rate (EER). Table 

2 compares fused systems with the baseline systems. The 

proposed modulation features system (S1+S2) performs 

significantly well with an EER of 7.20% and 7.97% with score 

and feature level fusion respectively which depicts the 

features’ complimentary nature. Our best proposed system 

(S1+S2+S3) yields an EER of 6.54%, outperforming all other 

systems. Our proposed system results improved further to an 

EER of 6.32% in version 2.0 dataset. To the best of the 

authors’ knowledge, this is the best performance reported in 

this standard corpus. Table 3 presents the results of  our best 

system (S1+S2+S3) for different replay conditions according 

to the threat level as defined in [10]. The proposed system 

outperforms previously reported results [10] under all nine 

threat conditions. 

Table 1: Individual system evaluation results in terms 

of % EER (All results are provided on ASVSpoof 2017 

version 1.0 dataset). 

Technique % EER 

S1: MCF-CC  12.92 

S2: MSE-CC  11.97 

S3: STCC  11.27 

Table 2: Comparaison of evaluation results with baseline 

systems in terms of % EER (All results are provided on 

ASVSpoof 2017 version 1.0 dataset except where noted). 

 System Description % EER 

B
a

se
li

n
e 

Light CNN fused systems [9] 6.73 

Light CNN + GMM [9] 7.37 

CNN +RNN+ GMM [9] 10.69 

SCMC+GMM [6] 11.49 

RFCC+GMM [6] 11.90 

P
ro

p
o

se
d

 

S1+S2 (feature fusion) 7.97 

S1+S2 (score fusion) 7.20 

S1+S3 9.21 

S2+S3 8.25 

S1+S2+S3 6.54 

S1+S2+S3 (version 2.0 dataset) 6.32 

Table 3: The best proposed system (S1+S2+S3) evaluation 

results (bold) and best reported results[10] (In 

parentheses) for low, medium and high threat conditions 

in terms of % EER, on version 2.0 dataset. 

Conditions Low  Medium  High  

Environment 6.36 (16.68) 5.97 (18.73) 8.68 (21.86) 

Playback  5.12 (16.64) 5.85 (16.44) 7.76 (18.37) 

Recording 3.53 (10.80) 6.68 (15.69) 7.16 (17.77) 

 

5. Conclusions 

We have proposed and investigated two utterance level 

features extracted from the modulation spectrum that help to 

identify replayed speech based on the static and dynamic 

characteristics of the speech signal. The two features 

complement each other and are further complemented by short 

term cepstral features. A fused system was then implemented 

to combine all three features with score level fusion. This 

system is less complex compared to state-of-the-art systems, 

as it uses two utterance level features and a small number of 

Gaussian mixtures as a classifier. Experimental results for the 

modulation features system obtained on the standard 

ASVSpoof 2017 corpus show that they perform significantly 

better compared to the state-of-the-art systems, with an EER 

of 7.20%, and the system that fused the two modulation 

features with short term cepstral features further improved the 

EER to 6.54%. 
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