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Abstract
Estimating articulatory movements from speech acoustic

features is known as acoustic-to-articulatory inversion (AAI).
Large amount of parallel data from speech and articulatory mo-
tion is required for training an AAI model in a subject depen-
dent manner, referred to as subject dependent AAI (SD-AAI).
Electromagnetic articulograph (EMA) is a promising technol-
ogy to record such parallel data, but it is expensive, time con-
suming and tiring for a subject. In order to reduce the demand
for parallel acoustic-articulatory data in the AAI task for a sub-
ject, we, in this work, propose a subject-adaptative AAI method
(SA-AAI) from an existing AAI model which is trained using
large amount of parallel data from a fixed set of subjects. Ex-
periments are performed with 30 subjects’ acoustic-articulatory
data and AAI is trained using BLSTM network to examine the
amount of data needed from a new target subject for the SA-
AAI to achieve an AAI performance equivalent to that of SD-
AAI. Experimental results reveal that the proposed SA-AAI
performs similar to that of the SD-AAI with∼62.5% less train-
ing data. Among different articulators, the SA-AAI perfor-
mance for tongue articulators matches with the corresponding
SD-AAI performance with only ∼12.5% of the data used for
SD-AAI training.
Index Terms: acoustic-to-articulatory inversion, BLSTM net-
work, Adaptation

1. Introduction
Estimating articulatory movements from speech acoustic fea-
tures is known as acoustic-to-articulatory inversion (AAI) [1].
There are several applications of AAI including speech recog-
nition [2, 3], speech synthesis [4], speaker verification [5] and
multimedia applications [6, 7, 8]. For subject dependent AAI
(SD-AAI), various approaches have been proposed in the lit-
erature including codebook [9, 10], Gaussian mixture model
(GMM) [11], Hidden Markov Model (HMM) [12], mixture tra-
jectory model [13], Deep Neural Network (DNN) [14, 15, 16].
All these approaches need parallel acoustic-articulatory data
for training AAI model, which, in turn, requires recording of
speech and simultaneous motion of articulators from a subject
of interest. Electromagnetic articulograph (EMA) is a promis-
ing technology to record such parallel data. In EMA recording,
multiple sensors are glued to articulators of interest. While the
presence of sensors has minimal impact on articulation [17] and
does not pose any major safety issue, gluing sensor is a time
consuming process and a subject requires good amount of time
to get used to speaking naturally with sensors attached. Another
challenge in the EMA recording is that the sensors could fall off
in the middle of recording due to salivation or poor gluing [18].
Re-attaching sensor does not ensure placement of the sensor in
its exact original position. This, in turn, causes discomfort to the
subject as more time is spent to collect large amount of acoustic-

articulatory data required for training a SD-AAI model.
To overcome these hazards during recording of the par-

allel acoustic-articulatory data, various techniques have been
proposed in the literature for adaptation of only acoustic data
using target subject with respect to several reference subjects.
This methods are referred to as subject independent AAI (SI-
AAI), where the articulatory motion predicted from test sub-
ject’s speech does not belong to the articulatory space of the
test subject but it belongs to the training subject only, unlike
that in SD-AAI. Various acoustic space transformation tech-
niques used in SI-AAI include vocal tract length normalization
[19], cascade Gaussian mixture regression [20, 21], parallel ref-
erence speaker weighting [22] and by estimating the acoustic
mismatch between training and test subjects using a generic
acoustic space (GAS) [23]. Since there is a mismatch in both
acoustics and articulatory space between test and training sub-
jects in SI-AAI, these adaptation techniques do not generalize
well to match with articulatory space of the test subject. So
there is a need for adaptation of AAI model with low resource
of parallel acoustic-articulatory data from the target subject.

With a motivation to reduce the amount of time spent on
data recording for a new target subject, we, in this work, aim
to define a new scope of AAI, referred to as subject adaptive
AAI (SA-AAI), where the articulatory motion predicted using
SA-AAI lies in the space of the test subject just like in SD-AAI
but the parallel acoustic-articulatory data needed from the same
subject during training is minimal unlike that of SD-AAI. The
SA-AAI, while aims to reduce the demand for parallel data from
the test subject during training, requires large amount of parallel
acoustic-articulatory data from a fixed set of subjects, referred
to as reference subjects. These data from reference subjects are
used to train a generalized background AAI model (GBM-AAI)
which is further adapted using small amount of parallel data of
the target test subject. In the context of SA-AAI, we address the
following questions: 1) How much parallel data from target test
subject is required for adaptation of AAI model during training
to achieve a performance similar to that of SD-AAI? 2) Does
this requirement of parallel data vary in an articulator specific
manner? To the best of our knowledge, there is no work in the
literature that addresses adaptation of acoustic and articulatory
space in a data driven manner for AAI. Motivated by the transfer
learning paradigm in pattern recognition and computer vision
[24], we propose to fine-tune the parameters of the GBM-AAI
model instead of learning the SD-AAI model for a new target
subject.

Experiments are performed using 11.4 hours of parallel
recordings from 30 subjects. Experimental results reveal that
the SA-AAI scheme performs on par with the SD-AAI schemes
with ∼62.5% less data indicating that there is benefit in us-
ing the GBM-AAI model followed by the proposed adaptation
scheme. When the performance of SA-AAI scheme is com-
pared among different articulators, it is found that the amount
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of parallel acoustic-articulatory data from the target subject
needed to match the SD-AAI performance for tongue sensors
is less than that for lip sensors.

2. Dataset
For this work, 460 phonetically balanced English sentences
from the MOCHA-TIMIT corpus [25] are chosen as the stim-
uli for data collection. We collect data from 30 subjects which
comprises 13 females and 17 males subjects in an age group of
20-28 years. All the subjects are native Indians with proficiency
in English, and reported to have no speech disorders in the past.
Prior to the data collection, a consent form is signed by all sub-
jects, as recommended by the institute’s ethics committee. Prior
to the recording, all subjects are familiarized with the 460 sen-
tences to avoid any pronunciation error during recording. For
each sentence, we record simultaneous audio and articulatory
movement data.

Upper Lip: UL
Lower Lip: LL
Jaw: Jaw
Tongue TIP:TT
Tongue Body: TB
Tongue Dorsum: TDJaw

LL

UL
TBTD

TT

Y
X

Figure 1: Schematic diagram indicating the placement of EMA
sensors.

Electromagnetic articulograph (EMA) AG501 [26] is used
to record the articulatory movement data for this study. AG501
has 24 channels to measure the horizontal, vertical and lat-
eral displacements and angular orientations of a maximum of
24 sensors. The articulatory movement is collected with a
sampling rate of 250Hz. We use 8 sensors among which six
are placed on different articulators, namely Upper Lip (UL),
Lower Lip (LP), Jaw, Tongue Tip (TT), Tongue Body (TB), and
Tongue Dorsum (TD). The remaining two sensors are placed
behind the two ears for head movement correction. The sensors
are carefully placed following the guidelines provided in [27].
A schematic diagram of the sensor placement is shown in Fig.
1. Each of these eight sensors captures the movements of artic-
ulators in 3D space. In this study we consider the movements
only in the midsagittal plane, indicated by X and Y directions in
Fig. 1. Thus, we have twelve articulatory trajectories denoted
by ULx, ULy , LLx, LLy , Jawx, Jawy , TTx, TTy , TBx,
TBy , TDx, TDy . Before placing the sensors, the subject is
made to sit comfortably in the EMA recording setup. Once the
sensors are placed for recording, the subjects are given sufficient
time to get used to speaking naturally with the sensors attached
to different articulators. During recording, subjects are given
breaks whenever they felt tired of speaking and recording was
resumed only when the subject felt comfortable to continue.

A microphone is placed near the subject to record the audio
data at 48kHz synchronously with the articulatory data. Dur-
ing recording, the sentences are projected onto a screen placed
in front of the subject. Manual annotation is performed to re-
move silence at the start and end of the sentences. After remov-
ing silence, the total duration of the entire acoustic-articulatory
recording turns out to be 11.4 hours, where average durations
of recording per subject is 22.8 (± 2.5) minutes.

3. Proposed approach
The relation between the acoustic features and articulatory
movements is known to be non-linear and non-unique [14, 3].

Also, the relation is not instantaneous, i.e., acoustic feature at a
time need not be related to the articulatory position only at that
time; instead it could be related to positions before and after
that time. This is, for example, captured by using a fixed set
of frames before and after the current frame in traditional DNN
based AAI model. Even after incorporating such contextual in-
formation, the articulatory contours predicted by DNN based
AAI model turn out to be jagged in nature, which is further
post processed through low pass filtering. Deep recurrent neu-
ral networks architecture, namely, BLSTM network has shown
to overcome the problems of capturing context and smoothing
characteristics and achieves the state-of-art AAI performance
[16]. So, in this work, we choose BLSTM network as a choice
for AAI model. At frame index t, let xt be the M -dimensional
input and N be the number of memory cells in a LSTM layer
with output yt ∈ RN . Then, for each LSTM layer there will be
different weight vectors of type: input weights W∗ ∈ RN×M ,
recurrent weights R∗ ∈ RN×N and bias weights b∗ ∈ RN

(where, ‘∗’ corresponds to i, f , c, o). The forward pass for
LSTM layer can be written as follows [29, 30]:

it = g(Wixt + Riyt−1 + bi) input gate

ft = g(Wfxt + Rfyt−1 + bf ) forget gate

ct = ct−1 � ft + it � tanh(Wcxt + Rcyt−1 + bc)

cell memory
ot = g(Woxt + Royt−1 + bo) output gate

yt = tanh(ct)� ot block output

(1)

where, g is a point-wise non-linear activation function and �
denotes point-wise multiplication of two vectors. Total number
of parameters for each LSTM layer are 4× (MN +N2 +N).
BLSTM layer creates a second separate instance of the LSTM
layer to process the input sequences in two directions, namely,
chronological and reverse order, which double the number of
parameters required for training. Since, there is a large number
of parameters to train, it, in turn, requires adequate amount of
data.

Reference
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Target
subject

Acoustic
features

BLSTM
layers

Regression
layer

BLSTM
layers

Regression
layer

Acoustic
features

Articulatory
trajectories

Articulatory
trajectories

Generalized Background Model

Model AdaptationLow resource

Initialization

Figure 2: Block diagram of SA-AAI involving model adaptation
scheme.

Fig. 2, shows the block diagram of the proposed SA-AAI.
In the first step, it trains a GBM-AAI model from a set of
reference subjects, where initial layers are BLSTM layers and
last layer is time-distributed linear regression layer. GBM-AAI
captures a mapping between acoustics and articulatory motion
across many subjects. The weights of this GBM-AAI model
are used as pre-trained weights for adaptation for a new target
subject. Thus, the SA-AAI involves using the weights from
the GBM-AAI model as the initial weights, and fine-tuning the
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weights with the low resource target subject’s data. To over-
come the problems of over-fitting to the training data, we use
validation data for early-stopping. The principle of SA-AAI is
similar to the universal background model (UBM) in GMM for
modeling the acoustic variability [31, 32] across the speakers
and adapt it further to a target speaker.

4. Experimental Setup
The recorded speech from all the subjects is down-sampled
from 48kHz to 16kHz. As an acoustic feature, we compute 13-
dimensional Mel-Frequency Cepstral Coefficients (MFCC) [33]
for every 20ms with a shift of 10ms. Further, for each sentence,
cepstral mean subtraction is performed. The 12 dimensional ar-
ticulatory data is post processed to obtain articulatory feature
following the steps described next. It is known that the articu-
latory trajectories are smooth in nature, and most of the energy
for all the articulators lies below 25Hz [34]. So, the recorded
articulatory position data, is first low-pass filtered at 25Hz to
avoid high frequency noise incurred due to EMA measurement
error. The articulatory data is then down-sampled from 250Hz
to 100Hz. Further, within every sentence we make each dimen-
sion of the articulatory feature zero-mean, since the average po-
sition for each sensor could change from utterance to utterance
[3].

For every subject from the recorded 460 sentences, a fixed
set of 368 utterances is chosen as a train set (80%), and the
remaining 92 is divided equally for validation (10%) and test
(10%) sets. The recorded data from 30 subjects are divided into
two sets, namely Set-1 (8 male and 7 female) and Set-2 (9 male
and 6 female). The experiments are performed in a two-fold
manner, where in each fold we train three types of AAI models:

• Type-1: Pool all the training data (80%) from every sub-
ject in Set-1 and train a GBM-AAI model, denoted by
GBM-AAI-1.

• Type-2: Consider p% of the training data from a target
subject T in Set-2, and train a SA-AAI model by fine-
tuning the weights obtained from GBM-AAI-1.

• Type-3: For a baseline comparison, train SD-AAI using
complete training data of subject T in Set-2.

Type-2 and Type-3 AAI models are created separately for
all subjects T in Set-2. Finally, a similar set of models are
trained by swapping Set-1 with Set-2. This results in two gener-
alized models for AAI, namely GBM-AAI-1 and GBM-AAI-2.
In this work, four values of p% are considered: 12.5%, 37.5%,
62.5% and 100% of training data. This results in 30×4 =120
SA-AAI models and 30 SD-AAI models. Apart from utilizing
GBM-AAI for initializing the weights for SA-AAI, we also use
GBM-AAI for further assessment of SA-AAI models. We eval-
uate GBM-AAI-1 on test sets of Set-1 & Set-2 and evaluation
results are denoted as GBM-1-M (matched test) and GBM-1-X
(mismatch test). Similarly, GBM-2-M and GBM-2-X are com-
puted.

For AAI model architecture during training, we deploy first
three as BLSTM layers with 100 units followed by a linear re-
gression layer. We consider, minimizing Minkowski-R error
[35] between the original and predicted output as an objective
function. Minkowski-R error function is of the form

E =
T∑

t=1

12∑

i=1

∣∣∣yiL(t)− di(t)
∣∣∣

R
(2)

where, di(t) and yiL(t) are the original and predicted ith artic-
ulatory position value at tth test frame. In all the experiments,

Adam [36] optimizer is used for training with early stopping
using Keras library [37].

To assess the performance of AAI, we choose two evalua-
tion metrics, Root Mean Square Error (RMSE) and Correlation
Coefficient (CC) [34] for each articulator separately. RMSE and
CC in ith articulatory feature is given by

RMSEi =

√√√√ 1

T

T∑

t=1

(di(t)− yiL(t))2, (3)

CCi =

∑T
t=1(di(t)− d̄i)(yiL(t)− ȳiL)√∑T

t=1(di(t)− d̄i)2∑T
t=1(yiL(t)− ȳiL)2

. (4)

where, d̄i and ȳiL are the corresponding mean of di(t) and
yiL(t) across the number of frames T .

5. Results and Discussion
Choice of R in the cost function: For training AAI models, we
initially experimented with two different choices for R (R=1
& R=2). For R=1, the Minkowski-R takes the form of Mean
Absolute Error (MAE). Similarly for R=2, the cost function re-
duces to Mean Square Error (MSE), which is the widely used
cost function for AAI [14, 28]. The choice of R is based on
empirical evaluation of GBM-AAI model. For each subject, we
compute the average RMSE and CC over all the articulators. In
Table. 1, we report mean (standard deviation (σ)) of average
RMSE and CC across all target subjects, for different choices
of R. In both matched (GBM-*-M) and mismatch (GBM-*-X)

Table 1: Comparison of performance for choice of R=1 and
R=2 (MSE vs MAE)

Sheet1

Page 1

Model Metric
choice of R in cost function

R=2 (MSE) R=1 (MAE)

GBM-1-M
CC 0.8703(.0286) 0.8921(.0318)
RMSE 1.3639(.1301) 1.2978(.1886)

GBM-1-X
CC 0.75294(.0598) 0.7733(.0565)
RMSE 1.9242(.2974) 1.8716(.2984)

GBM-2-M
CC 0.8512(.0509) 0.8735(.0487)
RMSE 1.399(.3185) 1.3463(.2828)

GBM-2-X
CC 0.7275(.0606) 0.7433(.0563)
RMSE 2.004(.3705) 1.9544(.3741)

Model Data Metric MSE MAE

GM1

Set1  (Match
Corr 0.8703(.0286) 0.8921(.0318)
RMSE 1.3639(.1301) 1.2978(.1886)

Set2 (Misma
Corr 0.75294(.0598) 0.7733(.0565)
RMSE 1.9242(.2974) 1.8716(.2984)

GM2

Set1  (Misma
Corr 0.8512(.0509) 0.8735(.0487)
RMSE 1.399(.3185) 1.3463(.2828)

Set2 (Match
Corr 0.7275(.0606) 0.7433(.0563)
RMSE 2.004(.3705) 1.9544(.3741)

cases, MAE (R=1) performs better in terms of RMSE and CC
compared to MSE (R=2). This improvement might be due to
the fact that MSE is sensitive to the outliers and receives large
contributions from the points which have the largest errors. The
choice of R value less than 2 reduces the sensitivity to outliers.
Similar results are also observed in SD-AAI models as well. So,
R=1 is used for all further experiments.

Performance of SA-AAI: The SA-AAI performance (using
CC and RMSE) on target subjects from Set-2 using GBM-AAI-
1 model is shown in the first column of Fig. 3. The same is
shown for target subjects from Set-1 using GBM-AAI-2 in the
second column of Fig. 3. In all plots in Fig. 3, x-axis indicates
the p % of data from the target subject for SA-AAI model. The
CC and RMSE in all plots are computed following the steps
described next. At first, for each subject T , we compute av-
erage RMSE and CC over all the articulators. Upon the av-
erage RMSE and CC, we compute mean and σ across all the
subjects from the corresponding Set. First row represents the
performance in-terms of mean CC and second row represents
mean RMSE of SA-AAI and the corresponding σ is indicated
by errorbars. For comparing with SA-AAI performance, the
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Figure 3: CC (top row) and RMSE (bottom row) of SA-AAI av-
eraged across all the articulators. First (second) column rep-
resents mean (σ) across the target subjects from Set 1 (Set 2).
(SA-AAI (––),SD-AAI (R), GBM-*-M (- · -), GBM-*-X (-×-))

average RMSE and CC (with σ in written bracket) using SD-
AAI, GBM-*-M, GBM-*-X are plotted in the respective fig-
ures. While SD-AAI requires entire training data from the tar-
get, GBM-*-X does not require any training data from the target
subject.

From Fig. 3, we observe that at the 12.5 % data from
the target subject, the SA-AAI achieves a better performance
than the GBM-*-X model. We also observe that at p=12.5%,
the SA-AAI performance is similar to SD-AAI performance.
At 37.5%, the SA-AAI model performance is better than the
SD-AAI model. The superior performance of SA-AAI with
small amount of target subject’s data could come from using the
GBM-AAI. At 62.5%, the SA-AAI outperforms both SD-AAI
and GBM-*-M. It is also interesting to note that, at the avail-
ability of full training (p=100%), the performance of SA-AAI
is better than the GBM-*-M and SD-AAI by a margin larger
than that at p=62.5%. This suggests that instead of training an
SD-AAI model using only the training data of a new target sub-
ject, better AAI performance could be achieved if a GBM-AAI
model trained with a set of reference subjects (different from the
target subject) is used for adaptation with target subject’s train-
ing data. This could be due to the fact that GBM-AAI model
captures rich acoustic-articulatory mapping from multiple ref-
erence subjects unlike that in SD-AAI model.

Performance of individual articulators: We also examine
how the SA-AAI performance for an individual articulator
varies with p. Fig. 4 shows the SA-AAI performance in terms
of RMSE (mm) for each articulator (similar performance is ob-
served using CC as-well). In Fig. 4, the RMSE is averaged
across all 30 subjects (i.e., subjects in both Set-1 and Set-2).
The percentage (p) of data from the target subject at which SA-
AAI performance becomes superior to the performance of SD-
AAI or GBM-*-M varies across articulators. For example, in
the case of tongue articulators, namely, TTx, TTy , TBx, TBy ,
TDx, TDy , similar performance with respect to SD-AAI hap-
pens at p= ∼12.5%, while for LLx and ULx this happens only
at p= ∼37.5%. This could imply that the motion of lower lip
are more subject specific and that of tongue are more subject
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Figure 4: RMSE (mm) of individual articulators averaged
across all 30 subjects. (SA-AAI (––),SD-AAI (R), GBM-*-M (- ·
-), GBM-*-X (-×-)).
independent.

In summary, training a GBM-AAI model with data from
references subjects helps to perform SA-AAI under low re-
source condition. At 37.5% of training data, we could able
achieve a performance on par with SD-AAI. Using the pre-
trained weights from GBM-AAI and fine-tuning them in SA-
AAI scheme, helps even in the case of availability of full train-
ing data. It turns out that an improvement of 0.14 mm in average
RMSE for SA-AAI (1.29 mm) is obtained with p=100% com-
pared to that of SD-AAI (1.43 mm).

6. Conclusions
The proposed SA-AAI scheme enables to perform a low-
resource AAI for a new target subject by fine-tuning weights
learned from GBM-AAI model. Among different articulators,
when the performance of SA-AAI scheme is compared with
reference to SD-AAI, it is found that the amount of parallel
acoustic-articulatory data needed from the target subject for
tongue sensors is less than that for lip sensors. Note that in
the current approach we used complete training data from refer-
ence subjects to train a GBM-AAI model. Further, experiments
have to be conducted to verify how the performance of SA-AAI
will vary, while training GBM-AAI with low resource of data
from reference subjects as-well. Also, in the current experimen-
tal setup, Set-1 and Set-2 for training GBM-AAI is gender bal-
anced. It will be interesting to investigate, if there is any gender
dependency while performing SA-AAI for a target subject, by
training (and choosing) GBM-AAI specific to the gender. These
are the part of our future work.
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