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Abstract
This paper presents novel expectation-maximization (EM) al-
gorithms for estimating the nonnegative matrix factorization
model with Itakura-Saito divergence. Indeed, the common EM-
based approach exploits the space-alternating generalized EM
(SAGE) variant of EM but it usually performs worse than the
conventional multiplicative algorithm. We propose to explore
more exhaustively those algorithms, in particular the choice of
the methodology (standard EM or SAGE variant) and the latent
variable set (full or reduced). We then derive four EM-based
algorithms, among which three are novel. Speech separation
experiments show that one of those novel algorithms using a
standard EM methodology and a reduced set of latent variables
outperforms its SAGE variants and competes with the conven-
tional multiplicative algorithm.
Index Terms: Expectation-maximization, nonnegative matrix
factorization, Itakura-Saito divergence, audio source separation

1. Introduction
Nonnegative matrix factorization (NMF) is a rank reduction
method used for obtaining part-based decompositions of non-
negative data [1]. The NMF problem is expressed as follows:
given a matrix V of dimensions F×T with nonnegative entries,
find a factorization V ≈ WH where W and H are nonnegative
matrices of dimensions F ×K and K × T respectively, and K
is generally chosen so that K(F + T ) � FT . In audio appli-
cations [2], V is usually the magnitude or power spectrogram of
an audio signal. One can interpret W as a dictionary of spectral
templates and H as a matrix of temporal activations.

Such a factorization is generally obtained by minimizing a
cost function that penalizes the error between V and WH. Pop-
ular choices are the Euclidean distance [1] or Kullback-Leibler
[2] and Itakura-Saito (IS) divergences [3]. The IS divergence
between two matrices A and B with entries aft and bft is:

DIS(A,B) =
∑

f,t

dIS(aft, bft), (1)

dIS(a, b) =
a

b
− log

a

b
− 1. (2)

It has been shown relevant for audio applications [3] because of
its scale-invariance, which is practical to handle the large dy-
namic range of audio. Besides, it has a probabilistic interpreta-
tion: in Gaussian mixtures where the NMF models the variance,
maximum likelihood (ML) estimation is equivalent to an NMF
with IS divergence (ISNMF) of the power spectrogram [3].

The IS divergence is usually optimized by means of mul-
tiplicative update rules (MUR) algorithms derived from auxil-
iary function methods [3, 4, 5, 6]. Alternatively, expectation-
maximization (EM) algorithms [7] consist in maximizing a
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lower bound of the likelihood. For ISNMF [3, 8] a variant of
EM, called space-alternating generalized EM (SAGE) [9], re-
sults in updating all the NMF parameters in a sequential fash-
ion. It has been preferred to the classical EM algorithm because
when the mixture model does not include a noise part, the joint
posterior of all sources becomes degenerate [10]. Even though
this approach is outperformed by MUR [4], it remains interest-
ing for estimating more sophisticated Gaussian models where it
is not straightforward to derive MUR [11, 12].

In this paper, we propose to investigate alternative EM-
based algorithms for estimating the ISNMF model. By adopting
a strategy similar to that in [13, 14], we derive both standard EM
and SAGE algorithms. The set of latent variables can be either
the rank-1 components or the sources. This results in a total
of four algorithms, among which three are novel. We experi-
mentally assess their computational efficiency and potential for
a speech separation task. In particular, the standard EM algo-
rithm using a reduced set of latent variables provides faster con-
vergence and better separation results than the SAGE algorithm
used in the literature [8]. It also compares favorably with the
conventional multiplicative algorithm [3], which confirms its
potential for estimating more sophisticated NMF models [15].

The rest of this paper is structured as follows. Section 2
presents the baseline ISNMF model. In Section 3 we derive
the EM algorithms. Section 4 experimentally compares their
performance and Section 5 draws some concluding remarks.

2. Baseline ISNMF
2.1. Gaussian mixture model

Let X ∈ CF×T be the short-time Fourier transform (STFT) of a
single-channel audio signal. X is the linear instantaneous mix-
ture of J sources Sj ∈ CF×T , such that X =

∑
j Sj . We model

the STFT coefficients of all sources as independent circularly-
symmetric Gaussian random variables: sj,ft ∼ N (0, vj,ft),
and we model the variances with an NMF: Vj = WjHj , where
Wj ∈ RF×Kj

+ and Hj ∈ RKj×T
+ . Then, the mixture xft is also

the sum of K =
∑
j Kj components ck,ft ∼ N (0, wfkhkt),

so xft ∼ N (0, vx,ft) with Vx = WH.

2.2. Multiplicative Update Rules

To estimate the parameters Θ = {W,H}, a common approach
in a probabilistic framework consists in maximizing the log-
likelihood of the data, given by:

C(Θ) = log p(X|Θ)
c
= −

∑

f,t

log vx,ft +
|xft|2
vx,ft

= −DIS(V,WH), (3)

where V = |X|�2 and � denotes the element-wise power.
Therefore, the ML estimation is equivalent to performing an
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NMF with IS divergence on V, hence the name of ISNMF
model. Minimizing (3) is usually performed by iteratively ap-
plying the following updates:

W←W�
(

([WH]�−2 � V)HT

[WH]�−1HT

)�γ
, (4)

and:

H← H�
(

WT ([WH]�−2 � V)

WT [WH]�−1

)�γ
, (5)

where � and .
.

denote the element-wise matrix multiplication
and division, and .T is the matrix transposition. The exponent
γ depends on the optimization strategy: usual values obtained
with variants of the majorize-minimization technique are γ =
0.5 [4, 6] and γ = 1 [5].

3. EM-based algorithms
We describe here the EM-based algorithms for estimating the
parameters. Considering a given set of L latent (hidden) vari-
ables {Zl}l, the key idea is to maximize the following lower
bound of the log-likelihood, which is the conditional expecta-
tion of the complete-data log-likelihood [7]:

Q(Θ,Θ′) =

∫
p(Z|X; Θ′) log p(X,Z; Θ)dZ, (6)

where Θ′ contains the most up-to-date parameters. The algo-
rithm consists in alternately computing this lower bound (E-
step) and maximizing it (M-step). The set of latent variables
can either be the set of sources {Sj} (L = J) or the set of
rank-1 components {Ck} (L = K), such that:

xft =
L∑

l=1

zl,ft. (7)

Because of this constraint, the joint posterior variable Z|X is
degenerate [10]. This is why a SAGE variant, which we develop
hereafter, is preferred in practice [3, 8]. However, we will see
in Section 3.2 that an insightful choice for Z makes it possible
to express the posterior distribution p(Z|X).

3.1. SAGE

SAGE [9] is a variation of the EM algorithm, which consists in
partitioning the set of all parameters into disjoint subsets Θ =
{Θl}l and associated hidden-data sets {Zl}l. Therefore, we
have Θl = {Wl,Hl} where Wl = Wj if Z = S and Wl = wk
(which is the k-th column of the matrix W) if Z = C (same
goes for Hl). Then, instead of maximizing (6), we successively
maximize the following functionals, which are the conditional
expectations of the log-likelihood of Zl:

Ql(Θl,Θ
′) =

∫
p(Zl|X; Θ′) log p(Zl; Θl)dZl. (8)

This procedure guarantees that the likelihood (3) will be non-
decreasing. Since this approach has already been developed
in [3], we briefly summarize in the Appendix the E-step, which
consists in computing (8). The resulting functional is:

Ql(Θl,Θ
′)

c
= −

∑

ft

dIS(pl,ft, [WlHl]ft), (9)

where pl,ft = λl,ft + |µl,ft|2 is the posterior power of zl,ft
and λl,ft and µl,ft are its posterior mean and variance given
by (16). The maximization of Ql (M-step) then depends on Z:

• If Z = C, then Qk is directly maximized by setting its
gradient w.r.t wfk or hkt to 0 and solving. This leads to:

wfk =
1

T

∑

t

pk,ft
hkt

and hkt =
1

F

∑

f

pk,ft
wfk

, (10)

which results in an algorithm we will refer to as SAGE
(Algorithm 2 in [3]).

• If Z = S, then:

Qj(Θj ,Θ
′)

c
= −DIS(Pj ,WjHj), (11)

which is similar to (3): therefore, the corresponding up-
dates at the M-step are similar to (4) and (5) but where
V, W and H are replaced by Pj , Wj and Hj . We will
refer to the corresponding algorithm as SAGE-MUR.

While the first approach has been originally developed in [3],
the second is novel. Since the SAGE algorithm is known to
be time-consuming (updates are made sequentially), we believe
that it is relevant to reduce the set of latent variables, so we
loop over J components instead of K > J (as observed in a
multichannel framework [16, 17]).

3.2. Standard EM

Let us now derive a standard EM procedure to directly max-
imize (6). Due to the mixing constraint (7), we consider a
set of L′ = L − 1 free variables zft = [z1,ft, ..., zL′,ft]

T ,
which is a Gaussian vector zft ∼ N (0,Σz,ft) with Σz,ft =
diag([v1,ft, ..., vL′,ft]). This idea, reminiscent from [13, 14],
allows us to write the posterior distribution in a non-degenerate
fashion. The posterior variables are zft|xft ∼ N (µft,Ξft)
where µft = [µ1,ft, ..., µL′,ft] is given by (16) and the poste-
rior covariance matrix is:

Ξft = Σz,ft − diag(Σz,ft)v
−1
x,ftdiag(Σz,ft)

T . (12)

In particular, [Ξft]l,l = λl,ft. The complete-data log-
likelihood L(Θ) = log p(X,Z; Θ) is then:

L(Θ) =
∑

f,t

log p(xft|zft; Θ) +
∑

f,t

L′∑

l=1

log p(zl,ft; Θ)

c
=−

∑

f,t

log([WLHL]ft) +
|xft −

∑L′
l=1 zl,ft|2

[WLHL]ft

−
∑

f,t

L′∑

l=1

log([WlHl]ft) +
|zl,ft|2

[WlHl]ft
.

Therefore, (6) rewrites:

Q(Θ,Θ′)
c
= −

∑

f,t

L∑

l=1

log([WlHl]ft)

−
∑

f,t

1

[WLHL]ft
EZ|X;Θ′


|xft −

L′∑

l=1

zl,ft|2



−
∑

f,t

L′∑

l=1

1

[WlHl]ft
EZ|X;Θ′(|zl,ft|2).

As in the SAGE procedure (see (19)), EZ|X;Θ′(|zl,ft|2) = pl,ft.

Let us now compute EZ|X;Θ′
(
|xft −

∑L′
l=1 zl,ft|2

)
. We re-

move the indices ft in what follows and note the conditional
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expectation E for more clarity. We also introduce the column
vector a = [1, ..., 1]H of length L′ such that

∑L′
l=1 zl = aHz,

where .H is the Hermitian transpose. We have:

E(|x− aHz|2) = E(|x|2) + E(|aHz|2)− 2<(x̄aHE(z))

= |x|2 + E(zHaaHz)− 2<(x̄aHµ)).

Thanks to the trace identity:

E(zHaaHz) = Tr(aaHΞ) + µHaaHµ =
∑

i,j

Ξij + |aHµ|2,

(13)
which leads to E(|x − aHz|2) = |x − aHµ|2 +

∑
i,j Ξij .

The mixing constraint (7) imposes that x − aHµ = µL and
vL = vx −

∑L′
l=1 vl, which leads to:

∑

i,j

Ξij =
∑

l

vl − 1

vx

∑

i,j

vivj

= (vx − vL)− 1

vx
(vx − vL)2

= vL − v2
L

vx
= λL,

Therefore, E(|x− aHz|2) = λL + |µL|2 = pL, and finally:

Q(Θ,Θ′)
c
= −

∑

f,t

L∑

l=1

dIS(pl,ft, [WlHl]ft). (14)

Similarly to the SAGE procedure, the M-step is then performed
by either direct minimization of the IS divergence, as in (10) (if
Z = C) or by applying MUR (if Z = S). We will refer to the
following algorithms as EM and EM-MUR respectively.

Interestingly, we remark that Q is the same as in a
source+noise model (cf. for instance [16]) with a null noise
variance. As recalled in the introduction, it is common to add
a noise part to the mixture model in order to express the pos-
terior distribution of the sources in a non-degenerate fashion.
The derivation conducted here shows that the same result can
be obtained by considering a set of L− 1 free variables, which
eliminates the need to add a noise term in the mixture model.

The different algorithms introduced here are alike, but up to
several important differences. The updates in SAGE algorithms
have to be made sequentially, while it can be done in parallel
with the standard EM approach. Therefore, EM algorithms are
expected to be faster than their SAGE counterparts. Besides,
using a reduced set of latent variables (as in SAGE-MUR and
EM-MUR) reduces the risk of local minima compared to using
rank-1 components (as in SAGE and EM).

4. Experimental results
In this section, we evaluate the algorithms presented in this pa-
per for a supervised speech separation task. Simulations are run
on a 3.40 GHz eight core CPU and 32 Go RAM computer. An
implementation of the algorithms is available online1.

4.1. Setup

As the acoustic data we use a subset of the GRID corpus de-
scribed in [18]. In a nutshell, we arbitrarily choose J = 2
speakers (one male and one female) from the database. There

1https://github.com/magronp/em-isnmf
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Figure 1: Output IS divergence (left) and total computational
time (right) at the learning stage.

are 100 sentences from each speaker, and each sentence con-
sists of a simple sequence of six words. We generate 10 sig-
nals by picking a random sentence from each speaker. The sen-
tences are scaled to equal root-mean-square levels (thus the in-
put signal-to-noise ratio is 0 dB) and summed to create the mix-
ture signal. The non-mixture sentences are then concatenated
to build a long signal on which speaker-specific dictionaries of
each test speaker are learned. The signals are sampled at 25 kHz
and the STFT is computed with a 60 ms long Hann window and
75 % overlap.

For all algorithms using MUR, we choose γ = 1 in the up-
dates (4) and (5), since it yielded better results than γ = 0.5 in
our experiments (this was also observed in [6]). SAGE-MUR
and EM-MUR use only 1 iteration of MUR at the M-step: in-
deed, we experimentally observed that, given a fixed total num-
ber of iterations, it leads to slightly better results than more.

4.2. Dictionary learning

We first learn the dictionaries on each speaker-specific learning
signals. For a fair comparison, the different algorithms use the
same nonnegative random valued initial matrices. Since each
NMF is performed on isolated signals for each speaker, then
J = 1 for each NMF. Therefore, the ML-MUR, EM-MUR and
SAGE-MUR algorithms are equivalent and refer to as MUR.
The algorithms use 1000 iterations and we present in Fig. 1 the
output IS divergence value and computation time for different
dictionary sizes (Kj = 10, 50 and 100).

We first observe that for dictionaries of size Kj = 10, the
three algorithms exhibit similar results in terms of computa-
tional time and IS divergence. However, when the dictionary
size increases, MUR outperforms the other approaches. In par-
ticular, it yields lower IS divergence values, which may be ex-
plained by a better representation of the data by the model with
bigger dictionaries. Contrarily, EM and SAGE perform worse
with bigger dictionaries: indeed, more components increases
the risk of getting trapped in some local minimum.

In terms of computational time, MUR is quite stable over
dictionary size: since this technique updates the dictionaries
onto matrix form, increasing their size does not significantly in-
creases the computational time. This is not the case for SAGE
where the updates are sequential, and consequently for which
the computational time is strongly impacted by the number of
components. The EM algorithm is designed to be more com-
putationally efficient than its SAGE counterpart, since updates
can be done all at once instead of sequentially, but in our imple-
mentation, the updates are made sequentially. Therefore, there
is some room for improvement for the EM algorithm.

Overall, EM and SAGE exhibit quite poor performance in
terms of computational time and output divergence. Acting on
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Table 1: Average source separation performance (SDR, SIR and SAR in dB) and time (in seconds) for various dictionary sizes. The
three last lines correspond to novel algorithms introduced in this paper.

Kj = 10 Kj = 50 Kj = 100
SDR SIR SAR Time SDR SIR SAR Time SDR SIR SAR Time

ML-MUR 5.7 13.5 6.7 3.1 7.0 15.4 7.8 3.6 6.5 14.7 7.3 4.7
SAGE 0.4 9.7 3.3 5.5 2.4 7.0 5.1 25.3 2.3 5.4 5.4 50.0
SAGE-MUR 1.6 12.1 4.0 5.9 2.7 13.3 4.7 6.8 2.0 12.6 4.2 8.0
EM 1.0 9.4 3.3 7.6 2.3 6.5 4.9 35.2 1.8 5.0 4.9 69.9
EM-MUR 5.8 13.4 6.8 5.9 7.1 15.1 8.0 6.7 6.5 14.5 7.4 7.6
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Figure 2: IS divergence over iterations at the separation stage.

rank-1 components in a sequential fashion increases the com-
putational burden and the risk of local minima. Therefore, we
recommend to learn dictionaries with a MUR approach, that is,
using ML-MUR, SAGE-MUR or EM-MUR.

Finally, let us note that even if it may appear, due to the
scale of the plot, that SAGE and EM lead to the same value of
the IS divergence, their output IS values are slightly different.

4.3. Separation

Since the dictionaries learned with EM and SAGE lead to a poor
IS divergence value, we use the MUR dictionary at the separa-
tion stage for all algorithms for a fair comparison. We concate-
nate the two speaker-specific MUR dictionaries and compute
the activation matrices on the mixtures, thanks to 100 more it-
erations of the algorithms.

The IS divergence over iterations is plot in Fig. 2. ML-
MUR appears to converge faster than the EM-based algorithms.
EM and SAGE seem to converge fast, but it may be due to the
presence of a local minimum, as suggested by the high result-
ing value of the IS divergence. This phenomenon becomes more
prominent as the dictionary size increases. We also observe that
ML-MUR, EM-MUR and SAGE-MUR lead to similar values of
the IS divergence after a sufficient number of iterations. How-
ever, this value is not exactly the same, which means that those
algorithms could yield different estimates, which may results in
more differences in terms of separation quality.

Therefore, let us now assess the algorithms in terms of au-
dio source separation quality. Once the NMF models have been
estimated, we retrieve the complex-valued STFTs of the sources
by means of Wiener filtering (16) and we synthesize time-
domain signals through inverse STFT. Source separation quality
is measured with the signal-to-distortion, signal-to-interference,
and signal-to-artifact ratios (SDR, SIR, and SAR) [19] ex-
pressed in dB, where only a rescaling (not a refiltering) of the
reference is allowed [20]. The results are presented in Table 1.

We observe that the algorithms using MUR yield overall
better results than their rank-1 components-based counterparts.
Besides, while the computational time of EM and SAGE be-
come prohibitive for dictionary sizes over 50, SAGE-MUR and
EM-MUR exhibit a reasonable time, even though they are more

costly than ML-MUR, which is the fastest procedure. Note that
once again, since updates in EM-MUR could theoretically be
done in parallel (but done sequentially in our implementation),
there is some room for improvement for EM-MUR.

Overall, ML-MUR slightly outperforms EM-MUR in terms
of interference reduction, but the latter leads to a greater SAR,
which results in a greater SDR. Therefore, it appears as an in-
teresting alternative to ML-MUR.

5. Conclusion
In this paper, we proposed to investigate on various EM-based
algorithms as alternatives to ML-MUR for estimating the IS-
NMF model. In particular, adopting a standard EM approach
(rather than the SAGE variant) and using a reduced set of la-
tent variables leads to EM-MUR, an algorithm that exhibits
better computational efficiency and separation results than the
SAGE variant. It also compares favorably with the commonly-
used ML-MUR technique. This is particularly interesting since
in more sophisticated models where the likelihood of the data
is not tractable, one cannot apply ML-MUR, and EM-MUR
would then fully reveal its potential. For instance, it can be
useful for estimating anisotropic Gaussian models with NMF
variance [15], or in a multichannel ISNMF framework, where it
is common to exploit EM algorithms [16, 21].

6. Appendix
Here, we compute the SAGE functional (8) introduced in Sec-
tion 3.1. Since the STFT coefficients are independent, we have:

Ql(Θl,Θ
′) =

∑

ft

∫
p(zl,ft|xft; Θ′) log p(zl,ft; Θl)dzl,ft.

(15)
The posterior variables are zl,ft|xft ∼ N (µl,ft, λl,ft) where
the posterior means and variances are given by Wiener filtering:

µl,ft =
vl,ft
vx,ft

xft and λl,ft = vl,ft −
v2
l,ft

vx,ft
. (16)

Besides, the hidden-data log-likelihood is:

log p(zl,ft; Θl)
c
= − log([WlHl]ft)− |zl,ft|2

[WlHl]ft
. (17)

Therefore, (15) rewrites:

Ql(Θl,Θ
′)

c
= −

∑

ft

log([WlHl]ft) +
EZ|X;Θ′(|zl,ft|2)

[WlHl]ft
.

(18)
Thanks to the König-Huygens identity:

pl,ft = EZ|X;Θ′(|zl,ft|2) = λl,ft + |µl,ft|2, (19)

so we finally have Ql(Θl,Θ
′)

c
= −∑ft dIS(pl,ft, [WlHl]ft).
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