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Abstract
Insufficient spectral smoothing during front-end speech
parametrization results in pitch-induced distortions in the short-
time magnitude spectra. This, in turn, degrades the performance
of an automatic speech recognition (ASR) system for high-
pitched speakers. Motivated by this fact, a non-uniform spectral
smoothing algorithm is proposed in this paper in order to miti-
gate the acoustic mismatch resulting from pitch differences. In
the proposed technique, the speech utterance is first segmented
into vowel and non-vowel regions. The short-time magnitude
spectrum obtained by discrete Fourier transform is then pro-
cessed through a single-pole low-pass filter with different pole
values for vowel and non-vowel regions. Sufficiently smoothed
spectra is obtained by keeping higher values for the pole in the
case of vowels while lower values are chosen for non-vowel re-
gions. The Mel-frequency cepstral coefficients computed using
the derived smoothed spectra are observed to be less affected by
pitch variations. In order to validate this claim, an ASR system
is developed on speech from adult speakers and evaluated on
a test set which consists of children’s speech to simulate large
pitch differences. The experimental evaluations as well as sig-
nal domain analyses presented in this paper support the claim.
Index Terms: Children’s speech recognition, spectral smooth-
ing, pitch robust features, speech segmentation.

1. Introduction
The front-end parametric representation of acoustic data is an
important phase in the development of any automatic speech
recognition (ASR) system. It results in a compact representa-
tion of the input speech data by eliminating the irrelevant infor-
mation and enhancing those aspects of the signal that contribute
significantly towards the performance of the ASR systems. Ear-
lier studies have reported that the most frequently used front-
end parametrization techniques such as mel-frequency cepstral
coefficients (MFCC) [1] are affected by the signal periodicity,
especially for high-pitched children’s speech [2, 3, 4]. Con-
sequently, highly degraded performances have been reported
when children’s speech is transcribed using an ASR system
trained on speech data from adult speakers. This is primarily
due to insufficient smoothing of pitch harmonics during front-
end feature extraction. In this paper, we present our attempts
to deal with the issues arising from acoustic variability induced
by age and gender differences, especially the pitch. A novel
spectral smoothing technique is proposed to impart robustness
towards pitch variations.

Acoustic attributes such as fundamental frequency (or
pitch), formant frequencies and segmental durations vary with
the age and gender of the speakers [5]. It is well known that,
the intra- and inter-speaker spectral variability decreases as the
age of the speaker increases [5, 6]. Generally, the fundamen-
tal frequency or pitch for adults’ speech falls in the range of

80 Hz to 200 Hz while that for children’s lies in the range of
200 Hz to 350 Hz. Elongation of vocal-tract occurs gradu-
ally as a child grows. This is accompanied with a decrement
in formant frequencies [5, 7]. High pitch period in the case of
children’s speech creates widely spaced harmonic components
due to under-sampling of the vocal-tract transfer function. Con-
sequently, the probability of a harmonic component becomes
more distal to the center frequency of a formant [8]. The in-
creased spectral and temporal variability observed in the case
of children’s speech are primarily due to anatomical and mor-
phological differences in the vocal-tract geometry, less precise
control of the articulators and a less refined ability to control
suprasegmental aspects such as prosody as highlighted in [9].
At the same time, compared to adults, their vocabulary is very
limited and sometimes also contains some spurious words. As
summarized in [10], children are more prone to use ungrammat-
ical phrases, incorrect pronunciations and imaginative words.

Due to highly pronounced acoustic and linguistic variabili-
ties in the case of children, automatic recognition of children’s
speech happens to be a much tougher problem [5, 9, 11]. To
impart robustness towards acoustic variations, models are gen-
erally trained on a large amount of speech data collected from
different groups of speakers. In addition to that, normaliza-
tion techniques like feature-space maximum likelihood linear
regression (fMLLR) [12] and vocal-tract length normalization
(VTLN) [13] are included to mitigate the ill-effects resulting
from age and gender variations. Despite that, higher pitch
period leads to pitch-induced spectral distortions that affect
the front-end speech parameterization process which, in turn,
severely degrades the recognition performance. To address the
pitch-induced spectral distortions, we present a novel spectral
smoothing technique in this paper. The proposed approach em-
ploys non-uniform single-pole filtering to effectively smooth
out the pitch harmonics from the spectra due to its low-pass
characteristics. Therefore, by including the proposed approach
for spectral smoothing into the standard MFCC feature compu-
tation process, pitch robustness is enhanced. The effectiveness
of the proposed pitch robust features are experimentally evalu-
ated in this paper. Furthermore, we have also studied the effect
of combining the existing dominant feature-space normalization
approaches with the proposed acoustic features.

The remainder of this paper is organized as follows: In
Section 2, the proposed pitch-insensitive feature extraction ap-
proach is described. The experimental evaluations are presented
in Section 3. Finally, the paper is concluded in Section 4.

2. Non-uniform spectral smoothing
2.1. Motivation for using non-uniform spectral smoothing

As already stated earlier, one of the most commonly used front-
end acoustic features are MFCC. The MFCC features are de-
signed to mimic the human perception mechanism. Due to low-
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Figure 1: Variances for the base MFCC features (C1-C12) for
vowel /IY/ divided into two broad pitch (F0) ranges. In the case
of MFCC, the variance of higher-indexed cepstral coefficients
for F0 > 220 Hz range is high when compared to that for the
F0 < 150 Hz case (top panel). The variance mismatch for those
coefficients is significantly reduced when the proposed spectral
smoothing module based non-uniform low-pass filtering is in-
cluded into the feature extraction process (bottom panel).

time liftering of cepstral coefficients, the MFCC features are
expected to be robust towards the ill-effects of excitation or sig-
nal periodicity. Contrary to that, the features vectors are ob-
served to be affected by the signal periodicity especially when
the speech signal being analyzed is from high-pitched (child)
speakers [2, 4, 14]. Consequently, the MFCC features exhibit
greater variance for the higher-indexed coefficients correspond-
ing to speech data from high-pitched speakers in contrast to
those for the speech data from low-pitched speakers [4]. To
highlight this observation, we repeated the study on the vari-
ance of cepstral coefficients reported in [4] using voiced speech
frames divided into two different pitch groups (F0 < 150 HZ
and F0 > 220 Hz). Since reliable vowel markings are avail-
able in the TIMIT database, this analysis was performed on the
vowel data extracted from the same. Using all the voiced speech
frames belonging to a particular pitch group, the variance of
each of the cepstral coefficients was computed. The results of
that study are summarized in Figure 1. There is a significant
mismatch in the variance of higher-indexed cepstral coefficients
across the two pitch groups.

For high-pitched child speakers, ill-effects of pitch harmon-
ics can be mitigated by reducing the length of the low-time
lifter [14]. Even though this approach improves the recognition
performance for child speakers, the performance with respect
to adults’ speech degrades. This is due to the loss of relevant
spectral information when a large number of cepstral coeffi-
cients are removed by liftering. Motivated by that, in [3, 4], a
spectral smoothing technique based on pitch-adaptive cepstral
truncation (PACT) was proposed. In the case of PACT, first
the short-time Fourier transform (STFT) employing a fixed du-
ration Hamming window was performed to obtain the spectral
representation of the speech signal. This was followed by deriv-
ing the log-compressed magnitude spectrum. Next, the cepstral
coefficients were computed by applying inverse discrete Fourier
transform (IDFT) on the log-compressed magnitude spectrum.

A pitch-dependent low-time lifter was then used for smoothing
out the pitch harmonics. The smoothed spectra was derived by
transforming the liftered cepstrum back to the spectral domain
using the discrete Fourier transform (DFT). This approach in-
volves estimation of the mean pitch value for each of the utter-
ances. The mean pitch value was, in turn, used for selecting the
optimal lifter window length.

To be effective, PACT-based spectral smoothing relies on
robust estimation of pitch of the signal being analyzed. More-
over, the same lifter is applied to all the frames irrespective of
the fact whether the frame of speech being processed is voiced
or unvoiced. Motivated by this issue, a non-uniform spectral
smoothing is proposed in this work. In the proposed approach,
we first segment the speech data into vowel and non-vowel like
regions. The vowels are near-periodic, high energy and long
duration sound units [15]. The non-vowels, on the other hand,
are lower in magnitude. Further, the non-vowels like fricatives
exhibit noise like characteristics and are shorter in duration. Af-
ter speech segmentation, a single-pole low-pass filter is then
used for spectral smoothing. Depending on the fact whether the
speech frame being analyzed belongs to vowel or non-vowel
like region, the pole location is changed. Thus, the proposed
approach does not explicitly rely on pitch estimation. At the
same time, the degree of applied spectral smoothing differs for
vowel and non-vowel like regions.

2.2. Pitch smoothing through single-pole low-pass filter

In order to address the mismatch in the variances, we have ex-
plored non-uniform single-pole filtering for smoothing the spec-
tra. The steps in the proposed scheme are as follows: The
vowel like regions are first detected by using a recently reported
method [16]. In that approach, an estimate of the speech signal
at each time instant is obtained using non-local means (NLM)
estimation [17]. Then the cumulative sum of the short-term
magnitude spectrum is used as the front-end feature. The fluc-
tuations in the feature is further smoothed by moving average
filtering over a 50 ms window. The significant transitions in the
smoothed feature are detected by convolving it with a 100 ms
long first-order difference of Gaussian window having a stan-
dard deviation which is one-sixth of the window length. In the
convolved output, termed as the vowel detection evidence, the
peaks and valleys correspond to the vowel onset point (VOP)
and vowel end point (VEP), respectively. The regions between
them are selected as the vowels.

After segmenting speech data into vowel and non-vowel re-
gions, STFT is performed with a fixed duration Hamming win-
dow. Thus the spectral representation of the speech signal is
obtained. Based on the knowledge of vowel and non-vowel like
regions, the magnitude spectra corresponding to each frame is
then processed though a single-pole filter having different pole
values for the vowel and non-vowel regions (αV ,αNV ). The
transfer function for the single-pole filter is given as:

H(z) =
1

1− αz−1
, where α ∈ {αV , αNV } (1)

MFCC features are then computed using the smoothed spectra.
The block diagram for deriving the smoothed spectrum and the
pitch-robust acoustic features is shown in Figure 2. The pro-
posed acoustic features are referred to as NUSS-MFCC in the
remaining of this paper.

The spectral smoothing obtained by the proposed approach
is demonstrated using a set of spectral plots shown in Fig. 3.
In Fig. 3 (a), the original log-compressed short-time magnitude
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Figure 2: Block diagram for computing the pitch-robust acous-
tic features applying non-uniform single-pole filtering for spec-
tral smoothening.

spectra for a voiced frame of speech having fundamental fre-
quency 300Hz is shown. The spectra is then processed through
a single-pole filter given by Eq. (1). The four pole values con-
sidered for deriving the smoothed spectra are 0.1, 0.4, 0.7 and
0.9 and the correspondingly smoothed spectra are shown in
Fig 3 (b), (c), (d) and (e), respectively. It is evident from the
shown spectral plots that, for high-pitch voiced speech units,
lower values for pole do not result in sufficient spectral smooth-
ing. At the same time, larger pole values lead to over smooth-
ing. The desired amount of smoothing is obtained when the pole
value is around 0.7. In this case, the smoothed spectra closely
resembles the spectral envelope. As a consequence of sufficient
spectral smoothing, the variance of the higher-indexed cepstral
coefficients gets reduced which easily noticeable from Figure 1.
In the case of speech, the ripples in the magnitude spectrum are
mostly due to the excitation source information. The excita-
tion source information is undesirable for ASR and, therefore,
should be effectively removed. Spectral smoothing via the pro-
posed method helps in removing the source information to a
large extent, because of the low pass filtering effect.

3. Experimental evaluations
In this section, we present the results of the simulation studies
done for evaluating the effectiveness of the proposed front-end
acoustic features over the MFCC features.

3.1. Experimental setup

Overlapping Hamming windows of length 20 ms with frame-
shift of 10 ms were employed to derive the short-time frames
of speech. The 13-dimensional base MFCC features were ex-
tracted after warping the power spectra using a 40-channel Mel-
filterbank. Time-splicing of the base MFCC features consider-
ing a context size of 9 was performed next. Dimensionality
reduction and de-correlation were then done using linear dis-
criminant analysis (LDA) and maximum likelihood linear trans-
formation (MLLT) to create 40 dimensional vectors. During
spectral smoothing, the pole value αV was varied from 0.5 to
0.8 in steps of 0.1. Similarly, αNV was varied from 0.3 to
0.7 in steps of 0.1. The set of optimal values were chosen em-
pirically. The window length, frame-rate and the number of
channels in the Mel-filterbank were kept the same to derive the
base NUSS-MFCC features. Time-splicing followed by LDA
and MLLT were performed on the base NUSS-MFCC to obtain
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Figure 3: Spectral smoothing affected by the proposed ap-
proach. (a) Log-compressed magnitude spectra for the cen-
tral frame corresponding to voiced speech from a high-pitched
speaker. The smoothed spectra obtained when (b) αV = 0.1,
(c) αV = 0.4, (d) αV = 0.7 and (e) αV = 0.9.

40 dimensional feature vectors. Both the kinds of feature vec-
tors were subjected to cepstral mean and variance normalization
(CMVN). Feature normalization using fMLLR was also done in
order to reduce the ill-effects of speaker-dependent variations.

The ASR system used for evaluation was trained on the data
obtained from the WSJCAM0 British English adults’ speech
corpus [18]. The Kaldi speech recognition toolkit [19] was used
for the experimental studies presented in this paper. For statis-
tically learning the ASR system parameters, a training set con-
sisting of 15.5 hours of speech data from 92 adult male/female
speakers was derived from WSJCAM0. The number of ut-
terances in the training set was equal to 7, 852 with a total
132, 778 words. Context-dependent hidden Markov models
(HMM) were employed for capturing the temporal variations.
Initially, Gaussian mixture models (GMM) were used to gen-
erate the observation probabilities for the HMM states. Cross-
word triphones were modeled using 3-states HMM each with
8 covariance components per state. Decision tree-based state
tying, with the maximum number of senones being fixed at
2000, was performed. We have also explored acoustic modeling
based on deep neural networks (DNN) [20] and Long Short-
Term Memory (LSTM) [21] in this work. For DNN-HMM
training, the fMLLR-normalized feature vectors were spliced
in time once more using context size of 9 frames. The DNN-
HMM setup consisted of 8 hidden layers. Each hidden layer
was, in turn, composed of 1024 nodes employing tanh nonlin-
earity. The initial and final learning rates were selected to be
0.005 and 0.0005, respectively. A minibatch size of 512 was
used while training the DNN parameters. The LSTM-based
acoustic models were trained with 4 hidden layers each hav-
ing 1024 nodes. The dimension of the LSTM cell was chosen
as 1024. The number of epochs used for LSTM training was
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Table 1: WERs for children’s speech development set with re-
spect to DNN-based ASR system trained on adults’ speech. The
WERs demonstrate the effect of varying αNV and αV .

αNV

αV WER (in %)
0.5 0.6 0.7 0.8 0.9

0.3 15.23 15.46 15.57 15.44 18.34

0.4 15.49 15.73 15.43 15.61 17.49

0.5 15.70 15.94 15.67 15.39 17.49

0.6 16.40 16.02 15.92 14.65 17.84

0.7 17.51 16.90 16.20 15.29 16.13

Baseline 16.62

set to 5 while the initial and final learning rates were selected
to be 0.005 and 0.0005, respectively. The initial alignments
employed in DNN and LSTM training were obtained using the
GMM-HMM system.

3.2. Evaluating pitch robustness of proposed features

Two different test sets were used for evaluation. The first one
consisted of 0.6 hours of speech data from 20 adult speakers
with a total of 5, 608 words. The 5k MIT-Lincoln bi-gram lan-
guage model (LM) was used while decoding this test set. This
LM has perplexity of 95.3 with respect to the adults’ speech
test set. A lexicon comprised of 5, 850 words including pos-
sible pronunciation variations was used. To simulate pitch-
mismatched testing scenario, a development set and a test set
consisting of children’s speech were used. These sets were de-
rived from the PF-STAR speech corpus (British English) [22].
The developmental set consisted of 150 utterances from 24
child speakers with a total 1.32 hours of speech data. The
children’s speech test set consisted of 1.1 hours of speech data
from 60 child speakers with a total of 5, 067 words. The child
speakers in both development and test sets belonged to 3 − 14
years age group. For decoding the children’s speech test set, a
1.5k bigram LM trained on the transcripts of speech data in PF-
STAR (excluding the test set) was used. This LM has an OOV
rate of 1.20% and perplexity of 95.8 with respect to the chil-
dren’s speech test set. Moreover, a different lexicon consisting
of 1, 969 words was employed.

The WERs for the children’s speech development set on
adult data trained DNN-HMM-based ASR system with vari-
ation in the αV and αNV values are given in Table 1. The
best combination is decided by the least possible WER as high-
lighted in the table. The WERs for both adults’ and children’s
speech test sets are given in Table 2. The value of αV and αNV

are chosen using the results given in Table 1 and the are 0.80
and 0.60, respectively. On comparing with the matched case
testing (i.e., adults’ test set), the recognition performances are
extremely poor in the pitch-mismatched setup when MFCC fea-
tures are used. Similar observations have been noted in earlier
reported works as well [14, 2, 4]. The use of proposed features
leads to significant reduction in WERs due to reduced pitch
mismatch. When compared to PACT-MFCC, a relative im-
provement of 8.15% is obtained by using the proposed NUSS-
MFCC features in the case of LSTM-based system.

Table 2: WERs for the adults’ and children’s speech test sets
with respect to ASR system trained on adults’ speech data. Sep-
arate ASR systems are trained using MFCC, PACT-MFCC and
NUSS-MFCC features.

Test Feature WER (in %)
Corpus kind GMM DNN LSTM

Adult

MFCC 7.24 5.89 5.13

PACT-MFCC 7.24 5.96 5.39

NUSS-MFCC 7.26 5.97 5.20

Child

MFCC 33.52 19.27 16.33

PACT-MFCC 31.27 17.20 15.94

NUSS-MFCC 26.95 16.05 14.64

Table 3: WERs for the children’s speech test set with respect
to adult data trained ASR systems demonstrating the effect of
combining VTLN the proposed features. The percentage relative
improvement (PRI) obtained by including VTLN are also given.

Acoustic WER (in %) P.R.I

model fMLLR VTLN+fMLLR (%)

GMM 26.95 19.86 26.30

DNN 16.05 13.92 12.90

LSTM 14.64 12.79 12.63

3.3. Reducing the ill-effects of formant scaling

Earlier works have shown that the use of VTLN is extremely
effective in the case of children’s ASR [3, 4, 23]. Hence, we
have also explored VTLN to reduce the effect of formant scal-
ing on the proposed NUSS-MFCC features. The linear fre-
quency warping factors was varied from 0.70 to 1.12 in steps of
0.02. A maximum likelihood grid search under the constraints
of the first-pass transcription was employed to select the op-
timal warping factor. The first-pass transcription was derived
by decoding the unwarped features using the developed acous-
tic models. To obtain enhanced recognition performance, the
optimally warped feature vectors were re-decoded. By the ap-
plication of linear frequency warping, a large reduction in WER
is obtained as evident from Table 3. It is worth mentioning here
that, VTLN warped features were subjected to fMLLR trans-
formation as well. This study shows that VTLN is additive with
the proposed features.

4. Conclusion
A novel spectral smoothing technique to enhance the pitch ro-
bustness of front-end acoustic features is presented in this pa-
per. The proposed approach involves two steps. First, the given
speech data is segmented into vowel and non-vowel like re-
gions. Next, the magnitude spectra corresponding to each of
the short-time frames is processed using a single-pole filter.
The pole location is changed depending on the fact whether
the frame being analyzed belongs to vowel or non-vowel like
region. The smoothed spectra thus obtained is used for comput-
ing the front-end acoustic features that are more robust towards
pitch variations than the existing ones. This claim has been ex-
perimentally verified in this paper.
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