
Gaussian Process Neural Networks for Speech Recognition

Max W. Y. Lam1*, Shoukang Hu1*, Xurong Xie2, Shansong Liu1,
Jianwei Yu1, Rongfeng Su3, Xunying Liu1, Helen Meng1

1Department of Systems Engineering and Engineering Management,
2Department of Electronic Engineering,

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
3Key Laboratory of Human-Machine Intelligence-Synergy Systems,

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
wylam, skhu, xyliu@se.cuhk.edu.hk

Abstract
Deep neural networks (DNNs) play an important role in state-
of-the-art speech recognition systems. One important issue as-
sociated with DNNs and artificial neural networks in general
is the selection of suitable model structures, for example, the
form of hidden node activation functions to use. Due to lack
of automatic model selection techniques, the choice of acti-
vation functions has been largely empirically based. In addi-
tion, the use of deterministic, fixed-point parameter estimates is
prone to over-fitting when given limited training data. In order
to model both models structural and parametric uncertainty, a
novel form of DNN architecture using non-parametric activa-
tion functions based on Gaussian process (GP), Gaussian pro-
cess neural networks (GPNN), is proposed in this paper. Initial
experiments conducted on the ARPA Resource Management
task suggest that the proposed GPNN acoustic models outper-
formed the baseline sigmoid activation based DNN by 3.40% to
24.25% relatively in terms of word error rate. Consistent per-
formance improvements over the DNN baseline were also ob-
tained by varying the number of hidden nodes and the number
of spectral basis functions.
Index Terms: speech recognition, deep neural networks, Gaus-
sian process, variational inference

1. Introduction
Recent advances in speech recognition technologies over a wide
range of applications demonstrate that deep neural networks
(DNNs) are indispensable in achieving state-of-the-art perfor-
mances [1]. The works of Han et al. [2] and Saon et al. [3]
suggested that deep learning based acoustic models can achieve
human-competitive performance on conversational telephone
speech recognition. Despite their successful and increasingly
wider application in speech processing applications, several
fundamental and highly challenging problems associated with
DNNs remain to be solved. First, the use of deterministic, fixed-
point model update is unable to consider parametric uncertainty.
This can lead to over-fitting when only limited amounts of train-
ing data is available. More importantly, due to the lack of
principled model selection method, the choice of DNN model
architecture, for example, represented by the form of activa-
tion functions, has been largely empirically based. For such
problems, Abdelaziz et al. [4] studied the propagation of ob-

*Both authors contributed equally to this work. This research was
supported by MSRA grant no. 6904412 and Chinese University of
Hong Kong (CUHK) grant no. 4055065.

servational uncertainties through DNNs. This paper is distinct
in that we address both parametric and structural uncertainty
using a novel, generalized form of non-parametric activation
functions derived from Gaussian process (GP) when designing
DNN-based acoustic models for speech recognition systems.

A series of previous works have been done to model para-
metric uncertainty in DNNs. In 1992, MacKay [5] formu-
lated DNNs in a Bayesian fashion by assuming random Gaus-
sian weights, resulting in a popular class of Bayesian neural
networks. Soon after MacKay’s work, Neal [6] proved that
single-hidden-layer Bayesian neural networks, in the limit of in-
finite width, is equivalent to Gaussian processes. More recently,
Hazan and Jaakkola [7] discussed constructing a kind of kernel
functions in GPs such that it is mathematically equivalent to in-
finitely wide deep neural networks, yet their construction does
not go beyond two hidden layers. Taking a similar direction,
Lee et al. [8] proposed NNGP, a more efficient way to approxi-
mate deep, infinite-width neural networks as GPs. They showed
that this kind of GPs can outperform deep, finite-width neural
networks due to GPs’ anti-overfitting property. However, we
conceive that GPs still cannot substitute DNNs since in DNNs
there are useful techniques that are likely not convertible to GPs,
such as the use of high ways [9, 10], or batch normalisation trick
[11]. Therefore, rather than approximating DNNs in GPs, this
paper employs GP in DNNs to model non-deterministic acti-
vation functions. Our work is inspired by the seminal work of
deep Gaussian processes (DGPs) [12] where activation func-
tions in a Bayesian neural network are all replaced by Gaussian
processes.

In our work, activation functions modelled by GPs are used
to address a form of structural uncertainty – uncertain choice of
activation functions. To gain generalizability, we make use of
generalized spectral kernels [13], which have been proven capa-
ble of approximating any continuous, bouneded kernels. From
generalized spectral kernels, we derive generalized activation
functions. Having defined the distribution of activation func-
tions, we marginalize over all random function parameters as a
means of trying all possible activation functions. By doing so,
our proposed Gaussian process neural networks (GPNNs) can
effectively handle both parametric and structural uncertainty.

In this paper, we directly compare the performance of
GPNNs with DNNs by replacing the first hidden layer as a
GPNN layer on the ARPA Resource Management (RM) task. In
the experiments, we vary the number of hidden nodes in a large
range to demonstrate GPNNs’ ability to reduce the risk of over-
fitting and under-fitting. Also, we evaluate the performance of
GPNNs with different numbers of spectral basis functions.

Interspeech 2018
2-6 September 2018, Hyderabad

1778 10.21437/Interspeech.2018-1823

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1823.html

2. Background
In this section, we formally define our notations and provide
some background of deep neural networks and Gaussian pro-
cess that are necessary to understand the rest of this paper.

2.1. Standard form of deep neural networks

We begin by defining a standard form of deep neural networks
(DNNs) as a multi-dimensional mapping:

fDNN : RDin 7→ RDout , (1)

where Din and Dout denote the dimension of input data and
the dimension of output data, respectively. In DNNs, there
are three types of layers: (1) input layer x ∈ RDin , (2) hid-
den layers fh : RDh−1 7→ RDh for h = 1, . . . , H where
D0 , Din, and (3) output layer fout : RDH 7→ RDout .
Following this notation, we can specify the layer widths of
a standard DNN simply by a list of H + 2 integers, i.e.,
(Din, D1, . . . , DH , Dout), where H typically denotes the num-
ber of hidden layers. To forwardly pass an input x through the
layers, i.e., fDNN(x) = fout (· · · f2(f1(x)) · · ·), we recursively
calculate, for h = 1, . . . , H ,

zh = Wh • fh−1(x) + bh, fh(x) = σ(zh), (2)

where • is the notation of dot product operation, zhi is the ith
output of an affine mapping applied to the outputs of previ-
ous layer with optimizable parameters Wh ∈ RDh+1×Dh and
bh ∈ RDh+1 , f0(x) , x is the initialization of recursion, and
for h = 1, . . . , H , fh(x) is produced after passing through
an activation function σ(·). Notably, in practice σ(·) is usu-
ally chosen from some common functions, e.g. sigmoid, tanh
and ReLU, that are proven to be universal [14]. After obtaining
fh(x), the outputs of DNNs can be computed by going through
an normalized affine mapping yet without activation:

fDNN(x) =
1√
DH

WoutfH(x) + bout, (3)

where Wout ∈ RDout×DH and bout ∈ RDout .

2.2. Gaussian process

A Gaussian process (GP) [15] is random process such that any
finite collection of random variables in Gaussian process fol-
lows a multivariate Gaussian distribution. If a function follows
Gaussian process, it is represented as

f(z) ∼ GP
(
m(z), k(z, z′)

)
, (4)

where z, z′ ∈ RDin are arbitrary inputs, m(·) is the mean func-
tion and k(·, ·) is the kernel function. In fact, there is a tight
connection between deep neural networks and Gaussian pro-
cesses [8] – if Wout

ij and bout
i are taken to be identically and in-

dependently distributed (i.i.d.), in the limit of infinite width of
the output layer (DH → ∞), it follows from the Central Limit
Theorem that fDNN(x) is a normalized sum of i.i.d. random
variables that tends toward a multivariate Gaussian distribution.
Thus, any finite collection of {fDNN(x1), . . . , fDNN(xk)} will
be multivariate Gaussian distributed, which resembles a GP.

In GP regression, both the mean function and the kernel func-
tion need to be specified before training. In practice, mean func-
tion is typically set to zero by assuming that the distribution of
outputs has been well transformed [15]. On the other hand, ker-
nel function has been extensively studied [16], as it controls the

Figure 1: Architecture of proposed GPNN

curvature properties of the its realization function f(·), such as
the degree of smoothness and periodicity. Any function satis-
fying positive definiteness, i.e.,

∑
i,j cicjk(zi, zj) > 0 for all

ci, cj ∈ R and zi, zj ∈ RDin is a valid kernel function. Not
surprizingly, a number of kernel functions exist in the litera-
ture. In this paper, we employ a form of kernel functions that
generalizes over all non-stationary processes, called generalized
spectral kernels [17], which takes the form of

k(z, z′) = φ(z)Tφ(z′), (5)

φ(z) =
1√
S

cos (ω1 • z) + cos (ω′1 • z)
sin (ω1 • z) + sin (ω′1 • z)

...
cos (ωS • z) + cos (ω′S • z)
sin (ωS • z) + sin (ω′S • z)

, (6)

with parameters ω1,ω
′
1, . . .ωS ,ω

′
S that are directly optimiz-

able as in [18]. Noted that S is a pre-specified integer that refers
to the number of spectral basis functions. As it appears, higher
S gives rise to better representational capacity of GP but longer
training time and larger amounts of parameters. Therefore, in
practice we select the largest possible S with regards to our af-
fordable computing resources at hand.

3. Gaussian Process Neural Networks
This section describes our proposed Gaussian Process neural
networks (GPNNs), which, taking the advantage of variational
approximation, leads to a practical learning algorithm that is
compatible to original training mechanism of standard DNNs.
In GPNNs, we employ Gaussian process layer as activations
using random feature expansion [19, 20] of generalized spectral
kernels at the first hidden layer, and by doing so we obtain a new
form of architecture to the standard DNN model, as illustrated
on Figure 1. Details are presented in the below sections.

3.1. Weight-space view of Gaussian process as a layer

One important issue associated with DNNs and artificial neural
networks in general is the manual selection of suitable model
structures, for example, the form of activation functions. Due to
lack of automatic model selection techniques, the choice of acti-
vation functions has been largely empirically based. To address
this issue, we propose to relax the restriction of using determin-
istic activation function by imposing randomness on functions.
Drawing inspiration from deep Gaussian process (DGP) [12],
in this work, we employ Gaussian process (GP) to control the
distribution of non-deterministic activation functions:

σ(z) ∼ GP(0, φ(z)Tφ(z′)), (7)

where z and z′ are arbitrary inputs to the activation functions,
and φ(·) is defined in Eq. 6 for a generalized form of kernel
functions. From a weight-space view of Gaussian process (see

1779

Algorithm 1: One stochastic forward pass of GPNN
Input: x, (D1, . . . , DH), S,

{W2,b2, . . . ,WH ,bH ,Wout,bout}, θ, p, p′

Output: fDNN(x)
1 for i← 1 to 2S do
2 for j ← 1 to Din do
3 sample εij fromN (0, 1)

4 Ẑij ←mij + sijεij
5 end
6 end
7 Z,Z′ ← vertically split Ẑ in half
8 f1(x)← ψ(Zx+ p,Z′x+ p′)
9 for h← 2 to H do

10 fh(x)←Whfh−1(x) + bh

11 end
12 fDNN(x)← 1√

DH

WoutfH(x) + bout

Chapter 2 of [15]), Eq. 7 can be rewritten as σ(z) = α • φ(z),
where α ∼ N (0, I2S) with I2S being the identity matrix with
2S non-zero entries. Noted that the random vector α repre-
sents amplitudes of different spectral basis functions. In theory
it is possible to use GP-based activation functions for all DNN
hidden layers, but the inference of stacked GPs is dramatically
much more expensive than inferring only one layer of GP such
that advanced approximation techniques are prescribed as dis-
cussed in DGP [12]. Hence, in our initial work presented in this
paper, we use a GP layer to replace the standard hidden layer. In
particular, the GP layer is placed on the first layer to simplify the
implementation and also to avoid the pathology issue reported
in [21]. Mathematically, now the input to GP is nothing but the
affine transformed input as defined in Eq. 2, giving

σ(z) = α • φ (z) = α • φ (Winx+ bin) , (8)

where Win , W1 and bin , b1. Since φ(·) involves a dot
product to optimizable parameters {ω1,ω

′
1, . . .ωS ,ω

′
S}, we

combine {ωi,ω
′
i} with the matrix parameter Win to obtain

Z =

ω>1

...
ω>S

Win, Z′ =

ω′>1
...
ω′>S

Win ∈ RS×Din , (9)

and also with the vector parameter bin to obtain p and p′. Now,
we simplify Eq. 8 into φ(z) = ψ(Zx+ p,Z′x+ p′) where

ψ(z, z′) =
1√
S

[
cos (z) + cos (z′)
sin (z) + sin (z′)

]
. (10)

Since in the next layer σ(z) will be affine transformed given
W2 and b2, optimizing the amplitudes α is similar to optimiz-
ing the W2 in standard DNNs, and thus has less effects on non-
deterministic activation functions. To maintain the randomness
of activation functions, we model the distribution of spectral

frequencies p(Ẑ|X,Y) with Ẑ =

[
Z
Z′

]
instead of modeling

the distribution of amplitudes α.

3.2. Training of GPNN in standard DNN framework

We embrace variantional inference using a variational distribu-
tion of Ẑ:

q(Ẑij) = N
(
mij , s

2
ij

)
(11)

with variational parameters. For ease of reference, we use θ
denote the collection of all θij for all i ∈ {1, . . . , 2S}, j ∈
{1, . . . , Din}. To perform inference over GPNN, our task is
to find the variational parameters to represent the original dis-
tribution p(Ẑ|X,Y). In variantional inference [22], θ can be
directly learned from back-propagation by differentiating the
negative evidence lower bound as objective function of mini-
mization:

L(θ) = −Eq(Ẑ;θ)

[
log p(Y|X, Ẑ)

]
+KL

(
q(Ẑ;θ)||p(Ẑ)

)
,

(12)

where KL(·||·) is the Kullback-Leibler (KL) divergence that
measures the distance between distributions. We refer to the
setting in [20, 23] where the prior p(Ẑ) as i.i.d Gaussian distri-
bution, i.e., p(Ẑij) ∼ N (0, 1). Using stochastic gradient vari-
antional Bayes estimator [24], we apply a re-parameterization
trick for each entry of the random matrix Ẑ using a differen-
tiable function g(·):

Ẑij = g(εij) = mij + sijεij , εij ∼ N (0, 1). (13)

Then, we have

Eq(Ẑ;θ)

[
log p(Y|X, Ẑ)

]
= Eεij∼N (0,1) [log p(Y|X, ε)]

(14)

meaning that the source of randomness comes from εij , which
can be easily generated in modern programming libraries. Here,
the definition of log p(Y|X, ε) depends on which the task
GPNN is tackling. In our application to speech recognition
tasks where Y is the tied triphone states, we define:

log p(Y|X, ε) =
N∑

i=1

yi • log softmax (fDNN (xi)), (15)

where (xi,yi) is the ith training input-output pair. It is essential
that above expectation term resembles the typical cross-entropy
used in the standard DNN framework. What’s more, KL diver-
gence can be regarded as a regularization term for the GP layer
[25], which again falls into the original DNN framework. These
together implies that, we can train GPNN in exactly the same
DNN framework, where a number of programming tools are
available for. All in all, one stochastic forward pass of GPNN
is shown on Algorithm 1. At training time, we can do a forward
pass and followed by the standard back-propagation algorithm
to update the parameters as in standard DNNs. But, at testing
time, we need to run the forward pass algorithm T times and
average all T predictions so as to marginalize over all possible
activations.

4. Performance Analysis
This section aims to compare our proposed GPNN acoustic
model to DNN acoustic model on the ARPA Resource Manage-
ment (RM) speech dataset. The number of nodes is varied from
50 to 4000 to demonstrate the advantage of GPNNs in model-
ing structural and parametric uncertainty to prevent over-fitting.
We analyzed GPNN’s and DNN’s ability of capturing distinct
features characterizing different speech patterns. The effects of
the number of spectral basis functions on the performance of
GPNN systems is also investigated.

1780

Table 1: WER (%) of four test sets on RM in DNN and GPNN system by varying the number of hidden nodes (Dh) and the number of
spectral basis functions (S). N denotes the number of free parameters in first hidden layer.

DNN GPNN Improve
S Dh N feb89 feb91 sep92 oct89 Total N feb89 feb91 sep92 oct89 Total Total
25 50 17600 11.79 10.39 17.27 12.30 12.95 17600 7.81 8.33 13.21 9.84 9.81 +24.25%
60 125 44000 7.97 8.53 14.38 10.47 10.35 44000 7.54 7.93 13.48 9.31 9.57 +7.54%

125 250 88000 7.18 7.13 12.66 8.98 9.00 88000 6.33 6.80 12.31 8.94 8.61 +4.33%
250 500 176000 5.97 6.32 11.61 7.68 7.90 176000 5.58 6.44 10.39 7.71 7.54 +4.56%
500 1000 352000 5.51 6.40 10.28 8.27 7.63 352000 5.58 5.88 9.69 7.53 7.18 +5.90%
750 1500 528000 5.62 6.32 10.43 7.90 7.58 528000 5.62 5.64 9.42 7.34 7.02 +7.39%
1000 2000 704000 5.47 6.08 9.57 8.23 7.36 704000 5.23 6.56 9.30 7.30 7.11 +3.40%
2000 4000 1408000 6.56 6.88 10.86 8.35 8.17 1408000 5.08 6.20 8.36 6.86 6.63 +18.85%

Table 2: WER (%) performance of four test sets on RM in GPNN
system with different number of spectral basis functions (S)

S feb89 feb91 sep92 oct89 Total
125 6.17 6.64 10.47 7.75 7.77
250 5.58 6.44 10.39 7.71 7.54
1000 5.54 6.16 9.34 7.04 7.03

4.1. Datasets and experimental setup

We conducted experiments on RM dataset. The input features
consist of 13 Mel-frequency cepstral coefficients (MFCC) con-
catenated with their first and second temporal differentials by
making use of a context of 9 frames, this leads to the construc-
tion of a 351 dimensional acoustic input feature at each frame.
The output consists of 689 tied tri-phone states.

Hybrid DNN baseline systems were created using the HTK
[26] open-source toolkit in two steps. At first step, we did layer-
wise discriminative pretraining with learning rate 0.001 using
the LIST learning rate scheduler, and then fin-tuned network
free parameters with learning rate 0.002 based on NEWBOB
learning rate scheduler. On the other hand, GPNN was imple-
mented in PyTorch [27]. We replaced the first hidden layer of
standard hybrid DNN by a GP activation layer, and the rest of
the model architecture remained the same as DNN baseline sys-
tem. We used Adam [28] optimization algorithm with learning
rate 0.001 and early stopping strategy . In training of both net-
works, cross-entropy was chosen as the loss function. In decod-
ing, a tri-gram language model constructed using all RM acous-
tic data transcripts was used for both DNN and GPNN systems.

4.2. Varying the number of hidden nodes

We trained DNNs and GPNNs with 5 hidden layers, and kept
the number of hidden units same across each hidden layer. In
GPNN, the first hidden layer is GP layer while the other lay-
ers remain the same as baseline DNNs. Varying the number
of nodes in each hidden layer corresponds to different struc-
tures. Since GPNNs use more generalized activation functions,
it could perform more robustly than DNN. In order to show its
robustness to underfitting and overfitting, we vary the number
of hidden nodes Dh in all layers (h = 1, . . . , H) from 50 to
4000. Table 1 shows word error rate (WER) performance of
DNN and GPNN systems with 50, 125, 500, 1000, 1500, 2000
and 4000 nodes in each hidden layer. As expected, DNNs with
fewer hidden nodes performed worse due to its lack of capacity
of understanding complex relationship encoded in the speech
data. On the other hand, when the number of hidden nodes is
too large, there is higher risk of overfitting in DNN system.

From the results, consistent performance improvements were
achieved by GPNN system over the baseline DNNs. Especially
when the number of hidden units equals 50 and 4000, where
GPNN system relatively improved 24.25% and 18.85% of the

WER over DNN baseline system, respectively. This is in line
with our expectation – DNNs with only a few hidden nodes can-
not capture the complex mapping between acoustic features to
triphone states, but GPNNs are able to mitigate under-fitting
when under a highly punitive constraint of model complexity.
Also, we see that DNN tends to be over-trained when too many
hidden nodes are used, while GPNN still retains a good per-
formance. This clearly demonstrates the ability of GPNNs to
prevent overfitting when building large-sized networks. Based
on the experiment results, we note that GPNNs can capture
more complex relationship between acoustic input and target
triphone state labels for using more generalized activation func-
tion forms. Considering these, we conclude that GPNNs are
more robust than DNNs.

4.3. Varying the number of spectral basis functions

In GP activation functions, the number of spectral basis func-
tions plays a vital role in representing possible forms of activa-
tion functions. Nonetheless, we varied the number of spectral
basis functions in the GP layer while fixing other hidden layers.
Table 2 shows the WER performance of GPNN systems con-
taining 125, 250, 1000 spectral basis functions in RM dataset,
while fixing 500 hidden nodes in all hidden layers. From the re-
sult, in all four test sets, WERs were decreased with larger num-
ber of spectral basis functions. This implies that the GP layer
gained more generalization power because of possessing more
spectral basis functions. With such an effect, it is encouraging
to use larger number of spectral basis functions in GPNNs.

5. Conclusions
In this paper, we propose a novel structure of neural network
called Gaussian process neural networks (GPNN) for speech
recognition using non-parametric activation functions based on
GP. Benefiting from the GP layer, the problem of model struc-
tural and parametric uncertainty are addressed. We varied the
number of hidden nodes, and obtained consistent improvements
of GPNN over the DNN baseline. From these experiments, we
conclude that GPNNs are more robust than standard DNNs. We
found that DNNs with fewer or larger number of hidden nodes
are prone to underfitting or overfitting, while GPNNs can still
give high standard of performances. Moreover, we analyzed the
effects of the number of spectral basis functions S on GPNN’s
performance. The results suggest that we can boost the perfor-
mance of GPNN by continuously increasing S. In the future,
we are eager to apply GPNNs to large vocabulary recognition
tasks such as Switchboard. It is also worthy to investigate the
recurrent formulation of GPNN for full sequence learning.

1781

6. References
[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[2] K. J. Han, S. Hahm, B.-H. Kim, J. Kim, and I. Lane, “Deep
learning-based telephony speech recognition in the wild,” in Proc.
Interspeech, 2017, pp. 1323–1327.

[3] G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dim-
itriadis, X. Cui, B. Ramabhadran, M. Picheny, L.-L. Lim et al.,
“English conversational telephone speech recognition by humans
and machines,” arXiv preprint arXiv:1703.02136, 2017.

[4] A. H. Abdelaziz, S. Watanabe, J. R. Hershey, E. Vincent, and
D. Kolossa, “Uncertainty propagation through deep neural net-
works,” in Interspeech 2015, 2015.

[5] D. J. MacKay, “A practical bayesian framework for backpropaga-
tion networks,” Neural computation, vol. 4, no. 3, pp. 448–472,
1992.

[6] R. M. Neal, “Priors for infinite networks,” in Bayesian Learning
for Neural Networks. Springer, 1996, pp. 29–53.

[7] T. Hazan and T. Jaakkola, “Steps toward deep kernel methods
from infinite neural networks,” arXiv preprint arXiv:1508.05133,
2015.

[8] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and
J. Sohl-Dickstein, “Deep neural networks as gaussian processes,”
arXiv preprint arXiv:1711.00165, 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[10] G. Pundak and T. N. Sainath, “Highway-lstm and recurrent high-
way networks for speech recognition,” in Proceedings of Inter-
speech, 2017.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning, 2015, pp. 448–456.

[12] A. Damianou and N. Lawrence, “Deep gaussian processes,” in
Artificial Intelligence and Statistics, 2013, pp. 207–215.

[13] Y.-L. K. Samo and S. Roberts, “Generalized spectral kernels,”
arXiv preprint arXiv:1506.02236, 2015.

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedfor-
ward networks are universal approximators,” Neural networks,
vol. 2, no. 5, pp. 359–366, 1989.

[15] C. E. Rasmussen and C. K. Williams, Gaussian processes for ma-
chine learning. MIT press Cambridge, 2006, vol. 1.

[16] D. Duvenaud, “Automatic model construction with gaussian pro-
cesses,” Ph.D. dissertation, University of Cambridge, 2014.

[17] Y.-L. Kom Samo and S. Roberts, “Generalized spectral kernels,”
arXiv preprint arXiv:1506.02236, 2015.

[18] J. Làzaro-Gredilla, C. E. Rasmussen, A. R. Figueiras-Vidal et al.,
“Sparse spectrum gaussian process regression,” Journal of Ma-
chine Learning Research, vol. 11, no. Jun, pp. 1865–1881, 2010.

[19] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems,
2008, pp. 1177–1184.

[20] K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone, “Ran-
dom feature expansions for deep gaussian processes,” arXiv
preprint arXiv:1610.04386, 2016.

[21] D. Duvenaud, O. Rippel, R. Adams, and Z. Ghahramani, “Avoid-
ing pathologies in very deep networks,” in Artificial Intelligence
and Statistics, 2014, pp. 202–210.

[22] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An
introduction to variational methods for graphical models,” Ma-
chine learning, vol. 37, no. 2, pp. 183–233, 1999.

[23] Y. Gal, R. T. McAllister, and C. E. Rasmussen, “Improving pilco
with bayesian neural network dynamics models,” in Data-Efficient
Machine Learning workshop, vol. 951, 2016, p. 2016.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[25] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “Kl-divergence reg-
ularized deep neural network adaptation for improved large vo-
cabulary speech recognition,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 7893–7897.

[26] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey et al., “The htk book,”
Cambridge university engineering department, vol. 3, p. 175,
2002.

[27] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

1782

