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Abstract
Automated emotion detection from speech has recently shifted
from monolingual to multilingual tasks for human-like
interaction in real-life where a system can handle more than a
single input language. However, most work on monolingual
emotion detection is difficult to generalize in multiple
languages, because the optimal feature sets of the work differ
from one language to another. Our study proposes a framework
to design, implement, and validate an emotion detection
system using multiple corpora. A continuous dimensional
space of valence and arousal is first used to describe the
emotions. A three-layer model incorporated with fuzzy
inference systems is then used to estimate two dimensions.
Speech features derived from prosodic, spectral, and glottal
waveform are examined and selected to capture emotional
cues. The results of this new system outperformed the existing
state-of-the-art system by yielding a smaller mean absolute
error and higher correlation between estimates and human
evaluators. Moreover, results for speaker independent
validation are comparable to human evaluators.
Index Terms: emotion recognition, emotion dimension, three-
layer model, prosodic feature, spectrogram, glottal waveform

1. Introduction
Identifying an emotional state from human voices based on
speech emotion recognition (SER) has been an increasing area
of focus within affective computing for interpreting the
semantics of a spoken utterance. The purpose is to create a
natural human-machine interaction in a real-world-context [1].
These days, psychology has proven that the human ability to
perceive emotions is cross-lingual with no utterance required
in his/her native or foreign language [2–4] . Despite great
progress made in SER, natural human-behavior interaction is
still an obstacle, on the grounds that there is a strong
dependence on the language being spoken, i.e. the best vocal
features usually differ from one language to another, which in
turn are harder to generalize in multilingual tasks [5] [6].
Automated multilingual SER, however, still faces several
problems that are not yet solved, such as the definition of
human emotions, the appropriate ability to recognize and to
predict emotion, and the extraction of representative and
generalizable vocal features. This study addresses each of
these issues with our SER system that can handle multiple
input languages.

The first important issue in the design of the SER system is
defining the human emotions to be predicted. Other
approaches used a small set of discrete emotional classes to
define happiness, anger, sadness, and so on [7]. However,
emotions are not constant, which may change the intensities in
the course of time and the surroundings [8]. Hence, a
description using just one categorical label is not sufficient.

Our study characterized emotions by using a two-dimensional
emotional space spanned by arousal (relaxed vs. aroused) and
valence (pleasant and unpleasant) after Russell’s study [9],
which provided a framework for detecting the dynamics in
gradual emotion transitions in day-to-day life.

The second important issue in SER is the need to furnish a
recognition model to predict valence and arousal. A number of
effort has been done to be able to predict emotion dimensions
from acoustic correlates from various estimators such as a
fuzzy inference system (FIS) and support vector
regression [10] [11]. However, the limitation of these works
lies in the fact that performance has been poor in terms of
valence. Scherer [12] adopted a version of Brunswik’s lens
model, originally developed in 1956, [13] to perceive
human-emotions by a multi-layer process. A three-layer model
consists of acoustic features, semantic primitives, and emotion
dimensions, which was later adopted for accurate estimation of
emotion dimensions [14]. This model reported reasonable
results on both the valence and arousal dimensions. Our study
was inspired by this human-perceptual-based strategy. We
originally examined this three-layer model for multilingual
SER tasks, and confirmed that it was well suited for mimicking
human emotion perception processing across languages [15].

The third important issue to be considered is the extraction
of the best features that can efficiently work for SER in
multiple languages. In the past, a great amount of work has
been published on developing the best features to characterize
different emotions in monolingual speech [16]. Unfortunately,
collected sets from different works were not consistent.
Differences in the features for different languages made
multilingual SER tasks quite difficult. Our earlier work [15]
and [17] analyzed a set of features including F0,
power-envelope, voice-quality, power-spectrum and duration in
a three-layer model, and yielded a comparable performance to
human evaluators among three languages [15]. Despite the
substantial performance reported, there were two restrictions
for practical applications in those studies.

First, the approach to feature extraction relied on manually
segmenting speech signal to underlying phrases and phonemes,
and then calculated one feature vector for each segmented
phrase and phoneme, which was not realistic for automated
SER in real-life scenarios. Second, speech emotional content
required comprehensive characterization, which may not be
given yet. When characterizing emotion, examined features are
mainly from a prosodic domain that is well suited for
describing the arousal dimension; however, are slightly limited
for valence. As a result, that study reported a comparatively
poor performance in the case of valence.

To address these problems of feature extraction, our study
focuses on extracting feature vectors from the utterance level,
as it can be adopted easier into real-life settings automatically.
Moreover, aside from the prosodic features, two more analysis
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domains referred to as spectral and glottal waveform were
further explored toward a comprehensive characterization of
emotional speech. Prosodic features were first decided on the
grounds that these features were advantageous for
distinguishing low and high arousal emotions in accordance
with human perceptions [18] [19]. Additionally, we explored
the spectral features in light of the fact that these features are
generally treated as strong correlates of the varying shapes of
the vocal tract and rate of change in articulator
movements [20]. It has been further reported that the emotion
dimension of valence was also reflected in the acoustic
parameters of the spectral features [21] [22]. Finally, the
glottal waveform was highly significant perceptually [23] [24],
and was greatly modified by the emotional state and general
speaking manner of the speaker [25] [26]. Parametric analysis
of glottal source components in speech further offers rich
information for capturing emotional cues. We hypothesized
that the combination of features from the prosodic, spectral,
and glottal waveform domains can improve the estimation
performance of valence and arousal.

In line with these findings, the main contribution of this
study toward multilingual SER is to define a robust set of
combined features to characterize emotional states among
languages. Extensive evaluations were performed from
different aspects: i) exploring the impact of the proposed
features to compare the performance of our system with
literature; ii) assessing the generalization ability of the
proposed system by conducting cross-speaker validation; iii)
enhancing the developed set of features by comparing it to a
language-dependent set of features in a monolingual scenario.

2. Database
We experimented with three corpora of acted emotions in
different languages: Japanese, German, and Chinese. In
addition, to train the system and compare performances using
the three corpora, four similar emotions including neutral,
happiness, anger and sadness were selected.

Fujitsu The Japanese corpus was the Fujitsu Database
recorded by Fujitsu Laboratory. In this corpus, a professional
actress was asked to utter a sentence using five emotions:
neutral, happiness, cold anger, sadness, and hot anger. There
were 20 different sentences. Each sentence had one neutral
utterance and two utterances in each of the other emotions. A
total of 140 utterances were selected from this database: 20
neutral, 40 happiness, 40 hot anger, and 40 sadness.

Berlin The German corpus was the well-known Berlin
Emo-DB. Ten professional actors (five males and five females)
each uttered ten sentences in German to simulate seven
different emotions. The number of utterances of each emotion
was: 127 anger, 81 boredom, 46 disgust, 69 fear, 71 joy, 79
neutral, and 62 sadness. Finally, 200 utterances were selected
from this corpus with 50 utterances in each of the four similar
emotions as in the Fujitsu data.

Casia The Chinese corpus was released by the Institute of
Automation, Chinese Academy of Sciences (Casia). It was
composed of 9600 utterances including six emotions: neutral,
anger, fear, surprise, happiness, and sadness. Four professional
actors (two males and two females) individually simulated
each of these emotions and produced 400 utterances in six
categories of different emotions. Ultimately, 200 utterances of
spontaneous content from four actors covering four emotions
(neutral, happiness, sadness, and anger) were selected, i.e. 50
utterances in each emotion.
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Figure 1: Schematic diagram of the three-layer model based
multilingual emotion recognition system.

3. Methodology
Figure 1 shows the structure of our multilingual SER system.
Feature extraction was first performed on multilingual
emotional speech. Selection of the most relevant features was
then done by sequential floating forward selection (SFFS). The
three-layer model incorporating fuzzy inference systems took
the best features as input and mapped them into valence and
arousal dimensions through semantic primitives.

3.1. Acoustic Features

To automate SER from multilingual speech, identifying
effective features is a significant task. We developed a robust
set of combined features from three analysis domains
including prosodic, spectral, and glottal waveform; and
produced a total of 260 acoustic correlates as follows.
Prosodic related features: We first extracted three low level
descriptors of fundamental frequency, short-term energy, and
energy entropy using STRAIGHT [27]. Eight statistical
functions per utterance were then calculated for each low level
descriptor: mean, median, maximum, minimum, standard
deviation, difference between maximum and minimum, 25%
and 75% quantiles. All together, we extracted 24 prosodic
features from speech signals.
Spectral features: Modulation spectral features (MSFs) were
examined in the spectral domain of emotional speech. In
contrast to conventional spectral features, which use
mel-frequency cepstral coefficients (MFCC) that convey a
signal’s short-term spectral properties only. MSFs are based on
a frequency analysis of the temporal envelope of multiple
acoustic frequency bins, capturing both spectral and temporal
properties of speech signals used by human listeners. This has
been supported by reports that MSFs outperformed MFCC in
SER [28]. We calculated five statistical functions of spectral
flatness, spectral centroid, and 2nd to 4th central moments of
the modulation spectrogram on the domains of 32
acoustic-frequency bands and six modulation-frequency bands.
In addition, the modulation spectral tilt was calculated on the
modulation-frequency domain, providing 196 MSFs in total.
The implementation we used was first published in [29].
Glottal waveform features: For the glottal waveform (GW)
features, we used COVAREP (v1.4.2), a freely available open
source Matlab and Octave toolbox for speech analysis [30].
Particularly, we extracted eight GW features including
normalized amplitude quotient, quasi open quotient, the
difference in amplitude of the first two harmonics of the
differentiated glottal source spectrum, parabolic spectral
parameter, maxima dispersion quotient, spectral tilt/slope of
wavelet responses, shape parameter of the Liljencrants-Fant
model of the glottal pulse dynamics (Rd), and the confidence
value of Rd. The individual features were obtained by
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calculating statistical values of each extracted parameter:
mean, variance, standard deviation, skewness, and kurtosis. All
together, we extracted 40 glottal waveform features per speech.

3.2. Primitives-based emotion evaluation

We defined a human-perceptual based framework to predict
emotions from multilingual speech using a three-layer model,
where it was assumed that the human perception of emotion
embedded in speech did not originate directly from a change in
acoustic cues, but from an indirect route of more subtle
perception of semantic primitives. Low arousal and negative
valence speech easily make an impression on listeners with
dark and heavy feelings, but high arousal and positive valence
speech is oftentimes uttered in a bright and well-modulated
way. The set of semantic primitives derived from [4] that we
examined and used in the three-layer model for describing
emotional speech was: bright, dark, high, low, strong, weak,
calm, unstable, well-modulated, monotonous, heavy, clear,
noisy, quiet, sharp, fast, and slow. To construct the three-layer
model, the three emotional corpora were first evaluated in
terms of each semantic primitive through human listening
tests. Emotional speech was evaluated 17 times by
participants; once for each semantic primitive for all utterances
in one corpus. Each of the 17 semantic primitives was scored
on a five-point scale: 1 Does not feel at all, 2 Seldom feels, 3
Feels a little, 4-feels, 5 Feels very much. Additionally, in light
of the fact that this study characterized emotions using a
dimensional space spanned by valence and arousal, these
corpora needed to be further annotated in terms of emotional
dimensions. The same participants were asked to evaluate
these dimensions on a five-point scale (-2, -1, 0, 1, 2) for
valence (-2 being very negative and +2 being very positive)
and arousal (-2 being very relaxed and +2 being aroused).

Eleven native Japanese speakers (nine males and two
females) were asked to evaluate the Fujitsu database, and ten
native Chinese speakers (five males and five females) were
asked to evaluate the Casia dataset. Unfortunately, it was
impossible for us to recruit enough native German speakers for
the listening test; so we asked nine Japanese speakers (eight
males and one female) to evaluate the Berlin Emo-DB instead.
The basic theory of the semantic primitives and emotion
dimensions was explained to the participants before they
listened to a small set of demos involving different degrees of a
certain emotion. The training test tried to enable the listeners
to understand the adjectives or dimensions. All stimuli were
played randomly through binaural headphones at a comfortable
sound pressure level in a soundproof room.

For each instance of speech n per corpus c, where
c ∈ {Fujitsu,Berlin, Casia}, 1 ≤ n ≤ N , the averaged
ratings x(p)

n,c of listeners’ responses x̂e,(p)
n,c among all evaluators

E were calculated for each semantic primitive (s) or emotion
dimension (d).

x(p)
n,c=

1

E

E∑

e=1

x̂e,(p)
n,c ,with p=

{
s, semantic primitive

d, emotion dimension
. (1)

The inter-evaluator agreement was evaluated using Eq. 2
following the related study reported in [10].
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Table 1: Average correlation coefficient (cc) for semantic
primitives of Fujitsu, Berlin, and Casia corpora by human
listeners; averaged of all speakers and whole utterances.
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Fuji .92 .90 .89 .91 .92 .91 .89 .90 .91 .89 .88 .88 .90 .93 .88 .85 .84
Berlin .86 .90 .87 .89 .93 .93 .89 .85 .90 .87 .86 .89 .87 .91 .87 .84 .86
Casia .82 .87 .86 .92 .91 .91 .88 .82 .82 .85 .85 .83 .89 .86 .89 .90 .91

Table 2: Average correlation coefficient (cc) for the emotion
dimensions of Fujitsu, Berlin, and Casia corpora by human
listeners; averaged of all speakers and whole utterances.

Valence Arousal
Fuji .96 .96
Berlin .92 .94
Casia .85 .91

The averaged results of inter-evaluator correlation for
semantic primitives and emotion dimensions of the three
emotional corpora were individually listed in Tables 1 and 2.
The cc in the evaluations of the semantic primitives and
emotion dimensions were identical between the three corpora
with values ranging from 0.82-0.93 and 0.85-0.96, indicating
good evaluation results. In particular, it can be found that the
inter-rater agreement was generally lower for valence than for
arousal, indicating human evaluations are more poorly
correlated in terms of valence compared to that of arousal.

3.3. Feature selection

Large feature sets not only have exorbitant costs in terms of
time for system training, but they also involve irrelevant
features that reduce recognition accuracy. In this regard, we
used the SFFS to select the best features from original sets of
260 acoustic features and 17 semantic primitives, separately.
SFFS is an iterative algorithm to evaluate the selected subset
and combined effects of features and k-nearest-neighbour
classifier during the evaluation process. Nine acoustic features
and four semantic primitives were finally used in this work.

4. Experiment
Three experiments were conducted to evaluate the efficiency of
the proposed approaches. First, we showed the relevance of
our developed set of features by comparing it to a previous
study, which we named MultiBaseline (MB) that was mainly
based on prosodic features [15]. Second, we carried out a
leave-one-speaker-out (LOSO) validation to assess the speaker
independence by comparing it to human evaluators as a
reference. Finally, we defined three monolingual tests with the
developed set of features and compared it to a system that was
conducted with the best language-dependent features [15].

Adaptive neuro fuzzy inference systems (ANFIS) were
used in the three-layer model to estimate continuous emotions.
The ANFIS was chosen on the grounds that it could efficiently
model nonlinear input and output relations by incorporating
human knowledge with a lower root mean square error [31].
Correspondingly, the nature of perception of speech emotion
was fuzzy and vague [10]. Furthermore, our three-layer model
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incorporated human knowledge from evaluations of semantic
primitives and emotion dimensions, which involved nonlinear
processing according to human emotion perception. To
estimate continuous emotion, each of the four semantic
primitives in the middle layer was predicted separately from
nine acoustic features using four FISs. Beyond that, the
estimation of emotion dimensions was done from four
estimated adjectives in the previous part by another two FISs.

4.1. Results on Multilingual evaluation

All results are given by a 10-fold cross-validation, where the
training and test data were collected by merging the three
corpora. We evaluated the systems using both the CC and
mean absolute error (MAE). The CC measured the agreement
between two variables, in this case, the averaged human
evaluators and the estimations by systems. The CC was
calculated by Eq. 2. The MAE was calculated as follows.

MAE(d) =
1

N

N∑

n=1

| x̂(d)
n − x(d)

n | . (3)

where d ∈ {valence, arousal}, x̂
(d)
n is the output of the

system, x
(d)
n is the averaged values from human evaluators,

and N is the total number of utterances in the three corpora.
Table 3 lists the CC and MAE for each system, for valence

and arousal separately. As seen, the proposed multilingual
SER furnished a notable result in estimation of the valence and
arousal, with a CC of 0.87 and 0.96, while the MAE was 0.38
and 0.22, respectively. This yielded a relative error reduction
rate of 13% and 20% for CC, and 7.3% and 12% for MAE on
valence and arousal respectively in comparison with that of the
MB. It is notable that the combination of vocal features from
prosodic, spectral, and glottal waveform domains improved the
estimation of emotional dimensions in multiple languages
significantly.

4.2. Results on LOSO

The LOSO cross-validation was performed by training on all
but one speaker’s data, and then was tested on the held data.
The held-out speaker (S) was rotated until all speakers were
tested. The LOSO results of the average correlation coefficient
(cc) and MAE (mae) of valence and arousal for each speaker
were reported in Table 4, and were compared with the cc and
standard deviation of evaluations among human evaluators in
the listening test as a reference.

As can be seen, for all speakers, the values of the cc were
found to be positive; and for most of these speakers, we found a
fairly high correlation in the range of 0.75-0.97. This result was
comparable to that of the human evaluations with the values of
the cc ranging from 0.82-0.96. Furthermore, the values of the
mae obtained from the LOSO validation were between 0.14
and 0.51 for the different speakers, and were comparable to the
std of the human evaluations. These errors are in the range
of half the distance between two evaluated scales in the human
listening test and thus notably small. It can be summarized that
the proposed framework is well suited for valence and arousal-
based detection for different speakers among languages.

4.3. Results on Monolingual evaluation

We defined a set of combined features that could efficiently
work for multiple languages. To further assess the efficiency of
this set, we performed three monolingual tests (MonoP) using

Table 3: Results of CC and MAE obtained for Valence (V)
and Arousal (A) by the proposed multilingual SER (MP) and
MultiBaseline (MB)

CC MAE Improvement
rel. in %

MP MB MP MB CC MAE
V .87 .85 .38 .41 13 7.3
A .96 .95 .22 .25 20 12

Table 4: Results of average CC and MAE of valence and arousal
obtained for each speaker by LOSO validation compared to the
mean CC and standard deviation of human evaluators (HEva)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

LOSO cc .89 .93 .91 .97 .95 .97 .61 .97 .91 .96 .89 .88 .69 .77 .75
mae .32 .33 .23 .19 .25 .14 .48 .25 .24 .21 .51 .41 .43 .43 .43

HEva cc .92 .96 .91 .92 .93 .91 .93 .94 .95 .94 .96 .92 .82 .88 .87
std .43 .42 .49 .52 .49 .48 .44 .42 .37 .44 .38 .40 .49 .40 .47

Table 5: Results of CC and MAE obtained on V and A by MonoP
and MonoBaseline (MonoB) for Fujitsu, Berlin and Casia

Fujitsu Berlin Casia
V A V A V A

CC MonoP .99 .99 .86 .97 .88 .93
MonoB .96 .99 .84 .96 .86 .93

MAE MonoP .16 .12 .37 .18 .31 .27
MonoB .26 .15 .41 .21 .37 .27

these same features, and compared them to the systems
conducted with the best language-dependent features
(MonoB) [15]. All results were presented by using a 10-fold
cross-validation.

The results of the CC and MAE for MonoP and MonoB
are shown in Table 5. As can be seen, MonoP yielded both a
higher CC and lower MAE for all emotion dimensions on all
corpora. Again, this performance in turn proved that our
developed features outperformed the language-dependent set
of features in [15]. On average, the CC and MAE over valence
and arousal was 0.99 and 0.14 for Fujitsu, 0.92 and 0.28 for
Berlin, and 0.91 and 0.29 for Casia, which was consistent with
human evaluators, cf. Table 2.

5. Conclusions
We presented a framework for multilingual SER. A set of
generalizable features was addressed from the prosodic,
spectral, and glottal waveform domains irrespective of
languages. As demonstrated, this set significantly improved the
estimation of emotion dimensions compared with results
shared in related literature. It further confirms the validity of
LOSO validation reports as a comparable performance to
human evaluation; in particular, for estimating continuous
emotion in a monolingual scenario. The developed features
even outperformed a language-dependent feature set. The
advantage of a multilingual continuous SER is that it could be
used to build an affective speech-to-speech translation system
that is capable of handling multiple input languages.
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