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Abstract 

Replay attacks are the simplest and the most easily accessible 

form of spoofing attacks on voice biometric systems and can 

be hard to detect by systems designed to identify spoofing 

attacks based on synthesised speech. In this paper, we propose 

a novel approach to evaluate the similarities between pairs of 

speech samples to detect replayed speech based on a suitable 

embedding learned by deep Siamese architectures. 

Specifically, we train a deep Siamese network to identify pairs 

of genuine speech samples and pairs of replayed speech 

samples as being ‘similar’ and mixed pairs of genuine and 

replayed speech to be identified as ‘dissimilar’. Siamese 

networks are particularly suited to this task and have been 

shown to be effective in problems where intra-class variability 

is large and the number of training samples per class is 

relatively small. The internal low-dimensional embedding 

learnt by the Siamese network to accomplish this task is then 

used as the basis for replay detection. The proposed approach 

outperforms state-of-the-art systems when evaluated on the 

ASVspoof 2017 challenge corpus without relying on fusion 

with other sub-systems. 

Index Terms: voice biometrics, anti-spoofing, Siamese, deep 

learning, speech recognition, human-computer interaction 

1. Introduction 

The vulnerability of state-of-the-art voice biometric systems to 

spoofing attacks is well-defined [1] and development of 

suitable countermeasures is an active area of research [2]–[4]. 

Spoofing attacks on voice biometric systems fall into one of 

four categories, based on the practicality and methodology of 

the attack: impersonation [5], speech synthesis [6], voice 

conversion [7] and the afore-mentioned replay attacks [8]. 

Among these, the lack of a need for sophisticated technology 

makes replay attacks the simplest and easily accessible form 

of attack. A replay attack comprises of recording the speech of 

a claimant and playing it back to the voice authentication 

system to spoof it. Studies on assessing the vulnerability of 

state-of-the-art automatic speaker verification (ASV) systems 

to replay attacks  concretely show that replay attacks are 

highly effective, evidenced by significant increases in both 

equal error rate (EER) and false acceptance rate (FAR) were 

observed [1]. 

Current countermeasures against replay attacks generally 

operate in one of three ways: (a) identifying exact 

reproduction of a previous access attempt; (b) exploiting 

differences in the speech transmission channel [9]; or (c) 

targeting artefacts in replayed speech such as pop-noise [10], 

and source features [11]. Commonly used spectral features 

include sub-band spectral centroid magnitude coefficients 

(SCMCs) [12], constant-Q cepstral coefficients (CQCCs) [13], 

single frequency filtering cepstral coefficients (SFF-CCs) [14], 

inverse Mel frequency cepstral coefficients (IMFCCs) [15], 

rectangular filter cepstral coefficients (RFCCs) [15], and 

scattering decomposition based features [16]. In addition, deep 

neural network (DNN) architectures have also been employed 

either as discriminative feature extractors [17] or as an end-to-

end spoofing detectors [18] in a number of ways. Some 

systems have utilized low-level cepstral features, such as 

CQCCs, RFCCs and MFCCs, to learn tandem features which 

are proposed and aimed to maximise the channel variability 

[19], and build residual neural networks (ResNet) [20] and 

deep convolutional neural networks (CNNs) [17]. In the place 

of the hand-crafted features, raw spectrograms are often used 

as an input for CNNs, recurrent neural networks (RNNs)  and 

ResNet [17]. The best performing spoofing detector so far 

utilises a reduced version of Light-CNN architecture (LCNN) 

[21] using the max-feature-map (MFM) activation, which is 

based on max-out activation function. 

However, the learning of sufficient features for each class 

requires a large amount of training data or the neural networks 

may suffer from over-fitting. A key challenge in replay 

detection is that a replayed version of a genuine speech 

(replayed speech) does not contain obvious variations other 

than additional channel factors, which may also be present in 

different sessions of genuine speech.  

In this work, we aim to address the afore-mentioned 

challenges in the field replay spoofing detection using a novel 

approach that uses the concept of a Siamese architecture. A 

Siamese architecture takes a pair of inputs and produces a 

similarity score, indicating whether the two inputs come from 

the same class. Siamese networks have been shown to be able 

to handle the indistinctive inter-class differences and large 

intra-class variations, and to be suitable for scenarios where 

the amount of training samples for a class is very small [22]. 

2. Siamese Architecture 

The concept of Siamese architecture was first developed in 

1993 to tackle the signature verification problem by Bromley 

and LeCun [23]. Siamese architectures are a class of network 

architectures that usually contains two identical subnetworks 

(twins) as shown in Figure 1. The Siamese architecture 

focuses on learning an embedding (with deeper layers) that 

places inputs of the same class close together. Hence, it can 

learn the similarities within each particular class, which makes 

the embedding more useful in a generic sense. The training 

process minimizes a discriminative loss function that drives 

the similarity metric to be small for pairs of inputs from the 

same class (pair of inputs are ‘similar’), and large for pairs 

from different classes (pair of inputs are ‘dissimilar’). As 

depicted in Figure 1, in a Siamese network, two inputs 𝑰𝒑 and 

𝑰𝒒 are taken in parallel. These inputs are simultaneously fed 
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into Siamese networks (for each sub-network) that translate 

each input into a latent encoding space, or ‘embedding’, 𝒙𝒑 

and  𝒙𝒒 respectively. The distance between these embeddings 

will reflect the abstract similarity between the two inputs. The 

parameters of the twin networks are tied together, which 

means that each sub-network is trained such that they share 

weights. Weight tying guarantees that two extremely similar 

inputs could not possibly be mapped by their respective 

networks to very different locations in feature space because 

each network computes the same function [24]. 
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Figure 1: A typical Siamese architecture concept involving 

two identical sub-networks, which share same network 

parameter, 𝜽, to translate the inputs 𝑰𝒑  and 𝑰𝒒  to the 

embedding 𝒙𝒑  and 𝒙𝒒  with loss function, 𝐿 

 

The Siamese network can be represented mathematically 

as a function  𝑓 that maps each input 𝑰 into an embedding x, 

given parameters θ of the form 

𝒙 =  𝑓 (𝑰;  𝜽) (1) 

The parameter vector 𝜽 contains all the weights and biases for 

the inner product layers. The aim is then to estimate the 

parameter vector  𝜽 such that the embedding  𝒙 produced 

through 𝑓 has desirable properties and places ‘similar’ inputs 

nearby. If the network has learnt a good embedding, we would 

find that 𝒙𝒑 and  𝒙𝒒 are close to each other for inputs of the 

same class, while they would be further apart for different 

class inputs. These embeddings, 𝒙, can be obtained by any 

DNN architecture. The sub-nets are joined by a loss 

function, 𝐿, at the right, which measures how well 𝑓 is able to 

place ‘similar’ inputs nearby and keep ‘dissimilar’ inputs 

further apart by computing a similarity metric involving any 

distance measure (such as Euclidean distance [25], cosine 

distance [26], etc) between embeddings 𝒙𝒑 and  𝒙𝒒. One such 

loss function that is often used in Simease is contrastive loss 

[27] defined as: 

𝐿(𝑰𝒑, 𝑰𝒒, 𝑙) = 

𝑙 ∗  𝑫(𝒙𝒒, 𝒙𝒑) + (𝟏 − 𝒍) ∗ 𝑚𝑎𝑥(𝑚, 𝑫(𝒙𝒒, 𝒙𝒑)) 
(2) 

where 𝑙 ∈ {0,1} is a label indicating if the input classes match 

or not, and 𝑫(𝒙𝒒, 𝒙𝒑) is any distance measure (measure of 

similarity) between 𝒙𝒑 and  𝒙𝒒. m is the margin equal to 1 in 

most cases. There is no single standard architecture for 

Siamese networks. Design is largely governed by what 

performs well empirically for the task at hand. There are many 

Siamese network variants reported in the literature for 

different applications, such as authorship verification [28], 

signature verification [23], face recognition [29], person re-

identification [30], image recognition [24], sentence 

matching[31],  inertial gesture classification [26], etc. In the 

speech domain, variants of Siamese networks have been used 

for audio-visual synchrony detection [32], learning speaker 

and phonetic similarities [33], and to extract speaker specific 

information [34]. 

3. Spoofing Detection Based on Siamese 

Architecture 

3.1. Proposed Architecture 

To learn a suitable speech signal embedding, 𝒙, for 

spoofing detection, based on the concept of Siamese network, 

we re-formulated the task of spoofing detection as follows: 

given a pair of input speech utterances, the network is trained 

to identify genuine-genuine speech or spoof-spoof speech 

pairs as ‘similar’ inputs and genuine-spoof speech pairs as 

‘dissimilar’ inputs.  

Although Siamese networks can be trained to maximize 

the distance between ‘dissimilar’ pairs and minimize the 

distance between ‘similar’ pairs of inputs, using a distance 

measure of some kind (e.g. Euclidean distance), this model 

requires searching over multiple distance functions as well as 

different thresholds for distances to find optimal parameters of 

network. Initial investigations were made into various distance 

functions, but they did not perform well on this dataset/task.  

Furthermore, even if we were able to achieve good results 

with such distance measures, the “real” distance measure for 

the input space remains uncertain. To tackle this issue, As 

shown Figure 2, we chose to train our Siamese network by 

outputting a softmax layer over the two targets: ‘similar’ and 

‘dissimilar’, thus allowing the model to learn the 

representation and distance function that best separates the 

genuine and spoof classes. This is one variant of Siamese 

network used in [28], ‘Siamese-Classification Hybrid 

architecture’ [35]. 
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Figure 2: Schematic diagram of Siamese-Classification Hybrid 

architecture, incorporating concatenation followed by fully 

connected layers and softmax function 

3.2. Genuine vs Replayed speech classification 

The embedding learnt by the Siamese network, can be utilised 

as a feature by any suitable back-end to distinguish between 

genuine and spoofed speech. In this paper we employ a GMM 

based back-end for this purpose. Alternatively a fully 

connected back-end can also be employed if an end-to-end 

system is desired. 

3.3. Experimental Setup 

3.3.1. Corpus 

The experiments reported in this paper were conducted on the 

ASVspoof 2017 challenge dataset [36]. All systems 

considered in this paper were trained using pooled training and 
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development sets. The development set was used for 

performance validation, parameter tuning and weight 

adjustment for the neural network systems, and the final 

model is then re-trained using the pooled data. With the 

objective of measuring the limits of replay attack detection, 

the ASVspoof 2017 database was designed to contain a 

diverse range of replay configurations ranging from conditions 

for which the detection of replay attacks should be relatively 

straightforward, to those for which detection should be 

considerably challenging. 

3.3.2. Front-end 

In order to compare with the LCNN based state-of-the-art 

spoofing detection system [17], we utilise the same features as 

the Light CNN system. Specifically, the mean and variance 

normalized log power spectrum, obtained via fast Fourier 

transform (FFT), were used as CNN input acoustic features for 

the sub-networks. Truncated normalized FFT spectrograms of 

size 864 × 400 × 1 were used  [17]  as the inputs of the first 

convolutional layer of each branch of the Siamese network. 

Spectrogram is trimmed to have 400 frames per utterance. 

Short utterances are extended by repeating their contents if 

necessary to match the required length, 400. Figure 4 shows 

the corresponding mean variance normalized spectrograms of 

a genuine and replayed version of “Birthday parties have 

cupcakes and ice-creams”, which shows that the spectrogram 

with this configuration has noticeable differences between 

genuine and replayed speech. 

3.3.3. Data Preparation 

The training of the Siamese-Classification Hybrid network is 

carried out in one-go, with pairs of inputs taken from ‘train’ 

and ‘dev’ set of ASVspoof 2017 corpus [36]. To construct the 

pair-wise dataset from ASVspoof 2017 to train our model, 

input pairs were produced by pairing each utterance, while 

ensuring that they are the same phrase. For ‘similar’ match, 

we make pairs of genuine-genuine and spoof-spoof utterance 

from same phrase. For ‘dissimilar’ match, we pair each 

genuine with all the spoof utterances. This yield around totally 

595,600 training trials, with equal numbers of ‘similar’ and 

‘dissimilar’ pairs. 
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Figure 4: Spectrograms of phrase: “Birthday parties have 

cupcakes and Ice-cream”, showing (a) genuine speech, and 

(b) replayed speech of a speaker 

3.3.4. Training the Siamese network 

The optimization objective is the average loss over all pairs in 

the data set. The output is mapped to [0,1] using a sigmoid 

function to make it a probability. Labels 𝑙 = 1 indicates the 

‘similar’ pairs (genuine-genuine pair or spoof-spoof pair), and 

𝑙 = 0 indicates the ‘dissimilar’ pairs (genuine-spoof pair). The 

network is trained with logistic regression, where the loss 

function is the binary cross entropy between the predictions 

and targets. The training data is randomly divided into mini-

batches of 128 utterances, making sure that each mini-batch 

contained 50% ‘similar’ and 50% ‘dissimilar’ pairs.  

      Configuration and parameter details of proposed network 

is depicted in Figure 3 which consists of 5 convolution layers 

(CONV) (adjoined with dropout of 0.2, ReLu and max pooling 

layer (Pool)) followed by 2 fully connected (FC) layers 

(succeeding with dropout of 0.7, 0.5 respectively, and ReLu) 

for a sub-net. The output of each sub-net (embedding) is then 

fed into a concatenation layer (adjoined with batch-

normalization followed by dropout of 0.2) and two fully 

connected layers (succeeding with dropout of 0.2 and ReLu) 

before the softmax output layer. Our concatenation layer is 

performing normal concatenation of two embeddings (xp and 

 𝒙𝒒) as follows: 

𝑐𝑜𝑛𝑐𝑎𝑡(𝒙𝒑, 𝒙𝒒) = [𝒙𝒑, 𝒙𝒒] (3) 

A regularized cross-entropy objective is imposed as in 

C
o

n
ca

ta
n

a
te

F
la

tt
e

n
F

la
tt

e
n

F
C

F
C

S
o

ft
m

a
x

Conv+
Dropout 

+ReLu

+Pool

Conv+
Dropout 

+ReLu

+Pool

Conv+
Dropout 

+ReLu
+Pool

 

Conv+
Dropout 

+ReLu

+Pool

Conv+
Dropout 

+ReLu

+Pool

Conv+
Dropout 

+ReLu

+Pool E
m

b
e

d
d

in
g

E
m

b
e

d
d

in
g

(a)

(b)

Frames

Frames

F
r
e
q

u
e
n

c
y

F
r
e
q

u
e
n

c
y

(a)

(b)

Frames

Frames

F
r
e
q

u
e
n

c
y

F
r
e
q

u
e
n

c
y

Iq

Ip

θ 

Conv+
Dropout 

+ReLu
+Pool

Conv+
Dropout 

+ReLu

+Pool

Conv+
Dropout 

+ReLu

+Pool

Conv+
Dropout 

+ReLu

+Pool

32 X 10 X 10 48 X 7 X 7 64 X 5 X 5 64 X 3 X 3 32 X 3 X 3

F
C

F
C

2048 X 1 64 x1

128 x 1 64 x1 16 x1 2 x1

 

Figure 3: Overview of proposed Siamese - Classification Hybrid Architecture which includes the system parameters. The size of each 

convolution (Conv) layers are indicated in the order of (no of filters X filter size).  𝜽 contains all the weights and biases for the inner 

product layers 
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[24]. Learning rates were decayed uniformly across the 

network by 1 percent per epoch. It was proved that by 

annealing the learning rate, the network was able to converge 

to local minima more easily without getting stuck in the error 

surface [37] and we also observed that. The development set is 

used to evaluate intermediate models and select the one that 

has maximum performance. All network weights are 

initialized in the convolutional layers from a normal 

distribution with zero-mean and a standard deviation of 10−2, 

as described in [24]. Biases were also initialized from a 

normal distribution with mean 0.5 and standard deviation 

10−2. In the fully-connected layers, the biases were initialized 

in the same way as the convolutional layers, but the weights 

were drawn from a much wider normal distribution with zero-

mean and standard deviation 2 × 10−1. Layer wise L2 

regularization was also performed. 

3.4. Experimental Results and Discussion 

At first, the 𝑛-dimensional embedding vector 𝒙 for each 

utterance is extracted from the trained Siamese network. In 

our case 𝑛 = 64. In order to compare the system directly to a 

baseline, a 2-class GMM back-end was used to obtain the log-

likelihood ratios between genuine and replayed speech. The 

GMM back-end was implemented as the maximum likelihood 

estimates using 4 mixture components.  

The primary metric for evaluation is the equal error rate 

(%EER). Table 1 compares the performance of the proposed 

Siamese architecture based spoofing detection with the 

baseline, and state-of-the-art spoofing detection systems on 

ASVspoof 2017 challenge corpus. To have the direct 

comparison with the existing systems we also report our 

results for the ASVspoof 2017 challenge corpus, version 1.0. 

Table 1: Comparison of proposed Siamese 

architecture based spoofing detection systems with 

existing systems on the evaluation set of ASVspoof 

2017 corpus. 

 System %EER 

B
as

el
in

e 
S

y
st

em
s 

LCNN + GMM [17] 7.37 

LCNN + RNN + CNN + GMM + i-

vector SVM [17]  
6.73 

CNN + RNN + GMM [17]  10.69 

HFCC + CQCC+ DNN + SVM [38] 11.50 

SCMC + GMM [15] 11.49 

RFCC + GMM [15] 11.90 

 Proposed Siamese embedding 

features + GMM 
6.40 

 

It should also be noted that since the Siamese network is 

trained on pairs of utterances, the number of training examples 

is in the order of the square of the number of speech samples 

in the database, which is beneficial given the number of 

parameters in the network. We examined different CNN 

configurations to determine which architecture provided the 

most informative encoding that was able to differentiate 

between genuine speech from replayed speech. The described 

CNN configuration was empirically found to be the best one. 

Further improvement of this Siamese architecture could 

incorporate the different architectures (such as ResNet, 

recurrent neural network (RNN)), various way of 

concatenating the embedding and adapt pre-trained models 

(such as VGGnet, GoogLeNet, etc), which will be explored in 

the future.  

While it is straightforward to envision a replay detection 

scheme that directly uses the trained Siamese network by 

using it to compare the test utterance with known genuine and 

spoofed speech from the training set, the scoring would have 

had to be carried out against a large number of known samples 

making the approach expensive and wasteful. Instead, the 

proposed approach of using a Siamese network to learn a 

suitable embedding and employing that as a front-end is 

expected to be a more practical approach. In order to further 

understand that the embedding, 𝒙,  and to verify that it can 

encode the dissimilarity between genuine and spoofed speech, 

we have plotted a 2 dimensional t-SNE  (t-distributed 

stochastic neighbour embedding [39]) plot of the embedding 

features, extracted for  ‘train’ set (Figure 5). From this figure, 

it is obvious that the class of ‘genuine’ and ‘spoof’ are indeed 

separable in the embedding space. 

 

 

Figure 5: 2-dimensional t-SNE plot of the embedding features, 

extracted for ‘train’ set of ASVspoof 2017 corpus. 

4. Conclusions 

In this paper, a novel deep leaning approach for spoofing 

detection based on the concept of Siamese architecture is 

proposed. The key idea is learn feature embeddings optimised 

for identifying if pairs of inputs that are ‘similar’ or 

‘dissimilar’ and use this as a front-end for detecting replayed 

speech. In this work, the embedding is learnt by jointly tuning 

two identical deep convolutional neural networks (CNNs), 

which is trained such that they share weights, linked by 

concatenating the embeddings and trained using a categorical 

cross-entropy loss function. The proposed architecture allows 

a single system to outperform all the current state-of-the-art 

replay spoofing detection systems. This framework provides a 

novel avenue for developing optimised front-ends. 
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