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Abstract
In noisy environments it is difficult for a computer to under-
stand what a person is saying, especially when there are multi-
ple speakers. In this paper we concentrate on separating over-
lapping speech. Non-negative matrix factorisation (NMF) is
a method of doing source separation without needing a lot of
data. The choice of cost function can have a significant im-
pact on the performance of NMF. We evaluate NMF using three
different cost functions (Euclidean, Itakura-Saito and Kullback-
Leibler), including modifications using sparsity, convolution or
additional information in the form of the direction of arrival.
We conduct this evaluation on three different speech corpora.
Adding directional information to NMF in the form of non-
negative tensor factorisation (NTF) gives us the best result on
the map task and vocalization corpora and the Itakura-Saito cost
function performs best on the acoustic-camera corpus. In this
paper, we show that the Itakura-Saito cost function is the most
robust cost function when the recording contains noise. We do
this by applying acoustic evaluation measurements.
Index Terms: speech recognition

1. Introduction
Over the past few years home automation has become an im-
portant topic. Alongside home automation, the importance of
speech recognition has increased, with it currently being used
in devices such as Amazon Echo and Google Home. However,
there is a big difference between speech recognition on a phone
in which the microphone is close to the mouth of the speaker
and speech recognition using a device that is placed somewhere
in a room in which the microphone picks up background noise
as well as speech. The device needs to isolate the speaker and
create a sound file that is as clear as possible. It has to differ-
entiate between different speakers that might be speaking at the
same time alongside other intrusive noise sources (e.g. an ex-
tractor fan in the kitchen which is on during cooking) in order
to understand what the main speaker is asking the device.

Blind source separation (BSS) is a process in which there is
no prior knowledge of the location of the sources or about the
sources themselves in the associated audio file. Different tech-
niques have been applied to this problem, for example, inde-
pendent component analysis (ICA) [1] and non-negative matrix
factorization (NMF) [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. According
to Mirsamadi et al. [13], the disadvantage of ICA is that if this
technique is combined with direction of arrival (DoA) it cannot
be used to solve the permutation problem for high frequencies
when the frequency exceeds the spatial aliasing limit.

NMF has been applied successfully on short range speech
(less than 5 metres) and premixed audio files [3, 14, 15]. With
NMF it is very important to choose the optimal cost function;
the Kullback-Leibler cost function is the most popular one to
use with NMF. Another cost function is the Itakura-Saito diver-

gence, which has been successfully used for music analysis to
separate out different instruments in an audio track [2, 3]. These
cost functions are combined with different techniques, for ex-
ample DoA [15] and convolution, to improve the accuracy of
NMF.

By adding directionality to a technique like NMF [15],
intensity information about the different sources is provided.
Combining the knowledge of the possible source locations with
information from multiple microphones allows the algorithm to
separate the sources. However, this assumes that the location
of the two sources is differentiable, which on a 2D plane is not
always the case when sources move around. For example, when
the sources are directly behind each other this does not show up
on a 2D plane, only in a 3D environment.

NMF is not the only technique applied to BSS - an inter-
esting alternative is deep learning [16, 17, 18]. The main dis-
advantage of deep learning is that it needs multiple hours of
speech data in order to build a mask for the separation of speak-
ers. However, instead of having to train it on every file, which
is the case for NMF, the technique is only trained once and after
that it can be used in real-time.

The novelty of this paper is that we concentrate on system-
atically evaluating the effectivenees of separating overlapping
speech by using NMF. We chose three corpora (acoustic-camera
corpus, map task corpus and vocalization corpus) for this prob-
lem. These three corpora have different recording distances
(i.e. distance between speaker and microphone) to test the per-
formance of the different NMF techniques when the recording
contains noise and to see how the distance between the micro-
phones and the speakers influences the performance of the al-
gorithm.

In section 2, we discuss the data we use for testing the al-
gorithms. This is followed by section 3 in which we discuss our
test method and introduce the different NMF techniques that we
use. The results of our experiments are presented in section 4,
followed by the discussion and conclusion in section 5.

2. Corpora
We use three different corpora for testing the NMF techniques.
A concise overview of the different corpora is given in Table 1.

The first corpus that we use is the vocalization corpus1 [8]
which contains recorded telephone conversations of 120 differ-
ent subjects. The speakers are asked to discuss what they would
take into an emergency shelter.

The HCRC MapTask corpus [19] contains recorded speech
of a person describing a route on a map. The recordings of this
corpus are made using headmounted microphones. During the
recordings both participants are in the same room.

Background speech of the second speaker is present in these

1http://www.dcs.gla.ac.uk/vincia/?p=378
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two corpora. This does not provide us with a clean ground truth.
These two corpora are not scripted or transcribed.

The third corpus is a small corpus recorded with an
acoustic-camera (AC). This device contains 72 microphones
which are placed in a circular configuration with one camera
in the middle of the circle. The AC gives us an exact location
of the microphones and allows us to use beam-forming to get
an approximate location of the sources. Beam-forming uses the
recordings from all microphones to determine which direction
the sound is coming from [20, 21]. The location information
of the microphones is also used to calculate the direction of ar-
rival of the signal for the algorithm described by Stein [15]. In a
clean environment, the device is able to locate the origin of the
sound, but with multiple sound sources it is not able to sepa-
rate them. The room we use has noise from the air-conditioning
along with reverberation due to the room size as is typical of
many home and office environments. The high sensitivity of
the microphones to noise and echo means that post processing
is needed to create a clear approximation of the source location.
The AC corpus contains noisy data, which makes it more chal-
lenging for algorithms to make a clean separation between the
different sources.

The recordings made by the acoustic-camera contain one
speaker each. These recordings were made in a room of 9 by
13 metres. The speakers are given a short story to read aloud,
which provides us with an easy way to transcribe the speech.
The speakers were instructed to stand still for two thirds of the
recorded time, after which they should walk around the room
keeping a minimal distance of 6 metres away from the camera.

For determing the direction of arrival of the sound, we are
using the exact location of the microphones. The first two cor-
pora do not have location information about the placement of
the microphones because the recordings are made with head
mounted microphones. To overcome this issue, we created it
artificially by assuming that there are three microphones each
placed one audio frame apart, thus the signal has a time delay
of 1 audio frame. This is dependent on the frame rate of the
recording. For example, when a recording is made at 16 kHz
the microphones would be spaced at speed of sound

frame rate metres or in
this case 340.29

16000
metres which is equal to 0.021 metres.

For testing an algorithm, we mix two individual files from
each corpus to create a two speaker file giving us a ground truth
to test the result against.

3. Method
NMF uses non-negative data for factorisation to separate the
sources. It needs to approximate the data (X), which is the
squared magnitude information of the recordings. To get this,
we take the short-time Fourier transform (STFT) with a window
of 30 ms and an overlap of 10 ms. The window size is slightly
bigger than what is normally used (25 ms) and should pick up
speech better than shorter windows. The amount of overlap is
the same as what is normally used for speech recognition. The
outcome of the STFT is then squared to remove the negative val-
ues. NMF approximates X by multiplying two matrices (W and
H) together (see Equation 1). The W matrix is an approximation
of the signal coming from the different sources (K) and the H
matrix is an approximation of the gain of the different sources.
When multiplied together, this gives us the approximated ver-
sion of X (X̃). Assuming that the size of X is frequency (F)
multiplied by time (N), then the size of the matrix W is F x K
and the size of H is K x N. At the end of each iteration, the
difference (or cost) between X and X̃ is calculated (see Equa-

tion 2) and the two matrices W and H are updated. In this paper,
we concentrate on three different cost functions: the Euclidean
distance (see Equation 3), Kullback-Leilbler (KL) divergence
(see Equation 4) and Itakura-Saito (IS) divergence (see Equa-
tion 5). We chose these three cost functions because of their
popularity.

X ≈ X̃ =WH (1)

D(X|X̃) =
F∑

f=1

N∑

n=1

d([X]fn|[X̃]fn) (2)

dEUC(x|y) = 1

2
(x− y)2 (3)

dKL(x|y) = xlog
x

y
− x+ y (4)

dIS(x|y) = x

y
− log x

y
− 1 (5)

We apply eight different techniques to the speaker sepa-
ration problem (see Table 2). Three of these techniques use
the Kullback-Leilbler (KL) divergence, while the others use the
Itakura-Saito (IS) divergence or the Euclidean distance. The
KL techniques are: convolution KL; sparse KL and direction
of arrival (DoA) KL. The eighth technique, non-negative tensor
factorisation (NTF), which is very similar to NMF, is described
below.

We use a MATLAB library called NMFlib for the different
KL and Euclidean techniques2. For the IS techniques, we use
the implementation given by [2]3 and the implementation for
both DoA techniques comes from [15]4. The three additions to
the cost function (sparsity, convolution, DoA) are chosen be-
cause of their performance on speech. Combined, they will al-
low us to compare the performance of the cost function and the
performance of the additional functions.

As mentioned, NMF works by updating the W and H matri-
ces. Some techniques, for example sparse KL, modify these up-
date functions to improve the accuracy of the NMF algorithm.
The addition of sparsity or convolution provide a different way
of separating the sources. The convolution should be able to
convolve the different frequencies together to form the origi-
nal matrix (see Equation 6). Sparsity ensures that the H matrix
does not converge towards a solution, instead the H matrix is
constantly being slightly modified. Despite the fact that it never
converges fully, it still separates the sources. The update rules
are given in Equations 8 and 9. The β parameter in these two
equations defines which cost function is used. The values for
β are given in Table 2 [2]. The λ parameter is added to the
update function of the H matrix to ensure the sparsity of this
matrix (Equation 9) - sparsity is only enforced when λ > 0
[22, 23]. We chose the sparsity parameter empirically by run-
ning experiments on the corpora with sparsity values between
0.9 and 0.001.

DoA NMF works by changing only the update rule for W
and multiplying W with a direction of arrival matrix (DW , see
Equation 7). This last matrix is the same size as W (F × K)
and its value are calculated using the least squares method.

W =W
((WH)β−2V̇ )

→t
H

(WH)β−1
→t
H

(6)

2https://github.com/audiofilter/nmflib
3https://www.irit.fr/ Cedric.Fevotte/extras/neco09/code.zip
4https://arxiv.org/src/1411.5010v2/anc
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corpus # subjects # mics # files file length
(mm:ss)

ground
truth

noise mic. to
source

location Fs transcripts

vocalization
corpus

120 (63
women,
57 men)

1 (per file) 2763 0:10 No No < 1 metre Lab
setting

16kHz No

MapTask
corpus

64 (32
women,
32 men)

1 (per file) 191 5:00 No No < 1 metre Lab
setting

16kHz No

acoustic-
camera

16 (12
men, 4
women)

72 (per file) 7 1:30 Yes Yes > 6 metres Empty
room

192kHz Yes

Table 1: Overview of the different corpora.

Technique Cost function Parameters
λ β

Sparse Euclidean Euclidean 0.0001 2
Convolution Euclidean Euclidean 0 2

IS Itakura-Saito 0 0
Sparse IS Itakura-Saito 0.0001 0

Convolution IS Itakura-Saito 0 0
Sparse KL Kullback-Leibler 0.0001 1

Convolution KL Kullback-Leibler 0 1
DoA Kullback-Leibler 0 1

Table 2: Overview of the different NMF techniques.

W = DWW
((WH)β−2V̇ )HT

(WH)β−1HT
(7)

W =W
((WH)β−2V̇ )HT

(WH)β−1HT
(8)

H = H
WT ((WH)β−2V̇ )

WT (WH)β−1 + λ
(9)

Lastly, DoA NTF factorises 3 matrices instead of 2. The
third matrix is made up of the information from the DoA [15].
This extra matrix (Dx) describes the direction of the sound
[15] (see Equation 10). Dx contains the direction of arrival
for the different frequencies over time, giving Dx the size F
x N. This changes NMF into non-negative tensor factorisa-
tion (NTF). This additional information should improve perfor-
mance when it is available.

X ≈ X̃ = DxWH (10)

For testing the different techniques, we apply 3 objective
measurements introduced in [10] namely: signal-to-distortion
ratio (SDR); signal-to-interference ratio (SIR) and signal-to-
artefact ratio (SAR). Positive values indicate better performance
for all measurements. We use the vocalization corpus and Map-
Task corpus to determine how well each technique performs the
separation task. With our own corpus, we measure the perfor-
mance of the different techniques when there is noise and re-
verberation in the recording. To deal with this, we apply some
preprocessing techniques in the form of noise reduction and a
multi-band compressor for reverb reduction. This gives us four
different sets of files; one without both reverb and noise, one
with only reverb, one with only noise and the original recording
containing both.

0

5

10

15

20

25

Convo
lutiv

e E
uc

Convo
lutiv

e IS

Convo
lutiv

e K
L

DoA N
MF

DoA N
TF IS

Sparse E
uclid

ean

Sparse IS

Sparse K
L

algorithm

dB

Measurement

SAR

SDR

SIR

Figure 1: A comparison between different NTF and NMF tech-
niques on the vocalization corpus.

4. Results
As mentioned in Section 3, we used the output of the STFT
as input for the NMF algorithms. These algorithms have two
fixed parameters (F and K), while parameter N depends on the
length of the file. For F, we used 513 frequency bins (this value
is empirically chosen) and set K to be the desired number of
speakers, in our case 2. We stopped the algorithms after 1000
iterations, by which time the cost function has converged.

The results show that all techniques have a good SAR ratio
on the vocalization corpus and the MapTask corpus, meaning
not many artefacts are introduced (see Figures 1 and 2). The
SDR and SIR ratios are poor for all techniques except for NTF.
This shows that NTF is able to remove both speakers from a
single file more clearly than the other techniques. However, the
combined speech files have no noise or reverb which in the real
world is rarely the case, except from telephone conversations.

We applied the different NMF techniques to compare the
performance with and without noise and reverb on the acoustic
camera corpus (see Figure 3). The IS cost function performs
the best when noise is removed (see Figure 3B). The same ap-
plies when we remove only the reverb (see Figure 3C) and when
we compare to the original (non post-processed) files (see Fig-
ure 3D). On removing both noise and reverb (see Figure 3A)
the sound gets distorted to an extent that the KL and Euclidean
versions of NMF out perform the IS and DoA versions.

Comparing the results of all techniques on the different ver-
sions of the acoustic camera corpus, when we remove the re-
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Figure 2: A comparison between different NTF and NMF tech-
niques on the MapTask corpus.

verb all techniques show an improvement in the SAR and SDR
values but get lower SIR values. The Euclidean cost function
has the greatest improvement compared to the rest of the tech-
niques. However, over all three corpora, the Euclidean cost
function has the lowest SAR of all the techniques and is there-
fore the worst performing technique on our corpora. Both the
sparse and convolution techniques work better on the noisy ver-
sion of the acoustic camera corpus. With this version, we see
more positive values. However, all the algorithms are out per-
formed by the IS cost function without the use of sparsity or
convolution on the reverberant speech.

5. Discussion and Conclusion
In this paper we have compared different NMF techniques to
determine which performs best in a natural environment (where
there is noise and reverb). When comparing the results, we see
that NTF works best on the different corpora. Therefore, when
we show NTF where the source is most likely coming from, the
technique is better at separating the sources compared to when
either NMF needs to determine this information by convolution
or the DoA information is not used at all. When we look at
the IS cost function, we see a smaller decrease in performance
when the recordings contain more noise. This improvement is
clearly visible when we compare the result to a version that does
not contain noise or reverb. In general, all techniques improve
when the noise is removed from the acoustic camera record-
ings. Comparing different versions of the corpus also shows
that removing reverb and noise is not always good for separat-
ing sources. The performance of the IS cost function decreases
when both reverb and noise are removed.

The poor performance of the DoA technique on the AC cor-
pus could be caused by the difference in microphone distance.
Stein [15] assumes a distance of one sample between the mi-
crophones, whereas we have an exact distance and are not using
this relative distance for the calculation of the angles as it is de-
scribed in [15]. This could explain why the algorithm performs
worse on our data.
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Figure 3: A comparison between different NMF techniques on
the noiseless and echoless (A), reverberant (B), noisy (C) and
original (D) AC corpus recordings.
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