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Abstract
The motivation for this work is to contribute to the col-

lection of large in-the-wild multimodal datasets in which the
speech of the subject is affected by certain medical conditions.
Our mining effort is focused on video blogs (vlogs), and as a
proof-of-concept we have selected three target diseases: De-
pression, Parkinson’s disease, and cold.

Given the large scale nature of the online repositories, we
take advantage of existing retrieval algorithms to narrow the
pool of candidate videos for a given query related with the dis-
ease (e.g. depression vlog), and on top of that we apply sev-
eral filtering techniques. These techniques explore both audio,
video, text and metadata cues, in order to retrieve vlogs that in-
clude a single speaker which, at some point, admits that he/she
is currently affected by a given disease. The use of straight-
forward NLP techniques on the automatically transcribed data
showed that distinguishing between narratives of present and
past experiences is harder than distinguishing between narra-
tives of self experiences and of someone else’s.

The three resulting speech datasets were tested with neural
networks trained with speech data collected in controlled con-
ditions, yielding results only slightly below the ones achieved
with the original test datasets.
Index Terms: data mining, pathological speech

1. Introduction
Speech, being a complex bio-signal that is intrinsically related
to human physiology and cognition, has the potential to pro-
vide a rich bio-marker for health, e.g. allowing a non-invasive
route to early diagnosis and monitoring of a range of conditions
including Parkinson’s disease, anxiety, depression or dementia,
just to name a few [1][2]. With the rise of speech related ma-
chine learning applications over the last decade, there has been a
growing interest in developing speech based diagnosis-aid tools
that perform non-invasive diagnosis [3][4][5][6][7].

However, one of the biggest challenges of developing
computer-aided diagnosis systems based on speech is acquiring
large amounts of training data. Often, the limited training data
available is recorded in controlled conditions, raising concerns
relating to the ecological validity of the experimental results ob-
tained. At the same time, the cost of collecting data in con-
trolled conditions is high, eventually prohibitive: From finding
eligible and willing subjects, to assigning healthcare specialists,
and guaranteeing the logistic and legal requirements for the data
collection process.

Our motivation is to provide a proof-of-concept of a valid
alternative to the traditional process of creating datasets. We ar-
gue that it can be achieved through mining medical data from
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in-the-wild, large scale, multimodal repositories. We hypoth-
esize that this type of data exists in very large quantities, and
contains highly varied examples of the effects of the diseases on
the subjects speech, unbound by human experiment design. At
the same time, this alternative keeps the collection cost low, in
terms of time and human resources. To the extent of our knowl-
edge, this is the first work attempting to automatically collect
disease specific datasets from multimodal online repositories.

We describe the ideal video candidate for the dataset as:
featuring a single subject; who is talking about himself/herself;
referring to present and not past medical conditions; and in-
cludes a spoken confirmation of their diagnosis. Video blogs
(vlogs), a popular category of videos which is defined as a per-
sonal video logging of any given experience, typically with little
production and editing, usually contain most of the aforemen-
tioned characteristics. Therefore, we focused our mining efforts
on them, (p.e. the query is depression vlog) in order to help ex-
clude other video formats also related to the target disease, such
as news pieces, lectures, etc. Even then, the fraction of target
videos is typically less than half the total number of retrieved
videos. Therefore, it is necessary to filter out the videos that do
not contain first person and present experiences about the target
disease. To do so, we propose doing a multimodal analysis of
the video and its metadata, using mostly off-the-shelf tools in
order to test the potential of our approach.

As a proof-of-concept we have selected three target dis-
eases: Depression, Parkinson’s disease, and cold. We col-
lected and labelled a small dataset for each target disease from
YouTube, building a corpus of in-the-Wild Speech Medical
(WSM) data, with which we test our proposed filtering solution.

Additionally, we test state-of-the-art neural networks,
trained to detect pathological speech with data collected in con-
trolled environments, against the WSM Corpus, to highlight the
differences between in-the-wild pathological speech, and patho-
logical speech collected in controlled conditions.

This paper is organized as follows: Section 2 describes the
simple retrieval process used to build this initial dataset from the
online repository YouTube; Section 3 reports the process of fil-
tering out the unwanted videos, describing the multimodal fea-
ture extraction process, and the classifiers; Their performance
in detecting the target videos in the WSM dataset is presented
in Section 4; Section 5 describes the models and experiments
performed with data in a controlled environment, and compares
them to the results obtained on WSM with the same models;
Finally we draw some conclusions in Section 6.

2. The WSM Corpus
The depression, Parkinson’s, and cold datasets of the WSM
corpus were collected in February 2018 from the online mul-
timodal repository YouTube. The published dates of videos
ranged from January 2007 to February 2018. The language of
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Table 1: Positive class incidence per label, per disease for the
WSM Corpus.

Dataset Vlog 1st Person Present Target topic All
Depression 92.2 73.4 50.0 56.3 28.1
Parkinson’s 56.3 54.7 56.3 68.8 28.1

Cold 96.9 79.7 90.6 62.5 46.9

Table 2: Overview of the WSM Corpus.

Dataset Class # Videos
Ave.

duration
[min]

Ave.
# Words/

Video

Ave.
# Words/

Min./Video

Vocab.
size

Total
length
[min]

Total
length

[words]

Depression
Positive 18 8.85 1142.44 149.28 2130 159 20564
Negative 40 10.44 1370.98 145.78 4321 418 54839
Overall 58 9.95 1300.05 146.86 5096 577 75403

Parkinson’s
Positive 18 6.73 948.50 138.78 2275 121 17073
Negative 43 10.11 1229.19 103.63 5058 435 52855
Overall 61 9.11 1146.36 114.00 5849 556 69928

Cold
Positive 30 15.96 968.23 149.77 2930 479 29047
Negative 33 10.07 1319.61 133.61 3710 332 43547
Overall 63 12.88 1152.29 141.30 5097 811 72594

the videos was restricted to English. The size of the WSM Cor-
pus has been limited to approximately 60 videos per dataset,
because of the need for manual labeling.

The dataset was collected by using a combination of the
official YouTube API and scrapping tools to retrieve a list of
results for the query ”[target disease] vlog”. The following in-
formation for each result (some of the items are marked as op-
tional, if they are not required to be filled out by the uploader):
video; unique identifier; title; description (optional); transcrip-
tion (automatically generated for videos in English, unless pro-
vided by a user); channel identifier; playlist identifier; date pub-
lished; thumbnail; video category (closed set, 14 categories, e.g.
”News”, ”Music” or ”Entertainment”); number of views; num-
ber of thumbs up; number of thumbs down; comments.

We note that the video’s transcription was automatically
generated by YouTube(only for videos in English), using a large
scale, semi-supervised deep neural network for acoustic model-
ing [8], unless a human transcription is provided by a user.

Each video in WSM Corpus was hand labeled with four
intermediate binary labels: 1) the video is in a vlog format; 2)
the main speaker of the video talks mostly about him/herself;
3) the discourse is about present experiences or opinions; 4)
the main topic of the video is related to the target disease. If
all intermediate labels were positive, the video was labelled as
containing in-the-wild pathological speech.

Table 1 shows the class distribution for each label, for the
three datasets. Table 2 presents some statistics for each dataset,
relatively to the ”all” class, namely: the average length of the
videos, the average number of words in the video’s transcrip-
tion, the average number of words per minute; the dataset length
in minutes and in words; and the total vocabulary size. These
statistics are presented for each dataset, both overall and broken
down for positive and negative presence of pathological speech.

3. Automatic Filtering of Videos with
Pathological Speech

One of the goals of this work was to perform the distinction
between videos of subjects affected by a target disease at the
time of the recording and other videos possibly still related to
the target disease, p.e. news pieces, presentations, classes, or
forms of artistic expression. As such, we focused on extracting
features that help our classifiers to automatically replicate the
manual labels.

Our focus was to establish a baseline performance for this

task, therefore we opted for simple straightforward techniques,
both for the feature extraction stage as well as for the modeling
stage. We deferred replicating state of the art techniques use to
solve related problems, including multimodal emotion recogni-
tion [9][10][11], and techniques that perform the synchroniza-
tion of the features across different modalities [12][13][14] as
future work.

3.1. Feature extraction

The feature extraction was performed mostly using existing
toolkits, in order to establish a baseline performance. From the
information extracted for each video, we computed the follow-
ing multimodal features:

Natural Language: Bag-of-Word (BoW) features were ex-
tracted from the video’s transcription. The BoW model was
used to convert a transcription in to a frequency vector of tokens
in the transcriptions. In this scheme, we obtained one feature
vector per transcription, in which each feature was the normal-
ized frequency of an individual token. The length of the vector
was the total size of the vocabulary of the corpus of transcrip-
tions. This model ignored the ordering of the tokens in the tran-
scription. In order to reduce the weight of very common words,
(e.g. the, a, is in English), which carry very little meaningful
information about the actual content of the document, we used
the term-frequency times inverse document-frequency (tf-idf)
transform.

Sentiment features were derived from the title, description,
transcription and top n comments of the video using the Stan-
ford Core NLP [15]. This tool is based on a Recursive Neural
Tensor Network (RNTN). RNTNs take as input phrases of any
length, and represent them through word vectors and a parse
tree. They then compute vectors for higher nodes in the tree
using the same tensor-based composition function. This RNTN
was trained on a corpus of movie reviews [16], and parsed with
the Stanford parser [17]. At this early stage, and given the small
dataset size, we have not yet included topic modeling, neither
semantic word embedding models.

Speech: We determined the number of speakers in the
video, via speaker diarization to the audio component of the
each video, using the LIUM toolbox [18]. The diarization pro-
cess is composed of 5 steps: First music segments are removed
music using Viterbi decoding; next, the signal is segmented in
to speakers and background by acoustic segmentation and Hi-
erarchical Agglomerative Clustering (HAC); then, a Gaussian
Mixture Model (GMM) is trained for each cluster; the signal is
then re-segmented through a Viterbi decoding; finally, the sys-
tem performs another HAC, using a cross-likelihood ratio mea-
sure and the trained GMMs.

Visual: Each video was segmented into scenes, using a
simple comparison between pairs of consecutive frames. Scene
changes were marked when the difference exceeded a preset
threshold. A random frame was selected for each resulting
scene. Automatic face detection using the toolkit [19], and
computation of color histograms is performed in the resulting
frames.

Metadata: Features derived from the collected metadata
included: a one hot vector representing the video category; the
video duration; the number of views; the number of comments;
the number of thumbs up; and the number of thumbs down at
the time of collection.
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3.2. Classifiers

We use two straightforward, well known models, to predict the
intermediate labels of the videos yi as well as the pathological
speech label: Logistic regression (LR), and Support vector ma-
chines (SVMs). For the case of the SVM we train 3 distinct
models with linear, polynomial of degree 3, and radial basis
function (RBF) kernels.

Given the large scale nature of the online repositories, it is
our hypothesis that the amount of content available per disease
is much larger than the size of the desired dataset. As such, it
is preferable to exclude content with a low confidence measure
of containing the target disease, rather than to include it. This
translates to training models that favour a high precision over a
high recall.

4. Filtering Results
In order to understand the contribution of each type of feature to
filter the target content, we trained a distinct classifier for each
type of feature, and another one with all the features. The text
component contributed with 28 features that describe the senti-
ment in the title, description, transcription and comments of the
video; plus 5096, 5849 and 5097 BoW features, for depression,
Parkinson’s and cold dataset, respectively (the number differs
for each dataset, based on their respective vocabulary size). The
speech component contributed with a single feature describing
the number of speakers in the video. The video component
contributed with a 768 dimensional feature vector to describe
the average color histogram of the video; plus one feature in-
dicating the number of different faces identified in the video;
and one feature indicating the number of scenes detected in the
video. The metadata contributed with 19 features. By concate-
nating features extracted from all modalities, the final feature
vectors have 5914, 6667, 5915 dimensions, for the depression,
Parkinson’s and cold dataset, respectively.

In total, 540 models were trained: LR, linear SVM, poly-
nomial SVM, and SVM-RBF, for each one of the eight types of
features plus one for all the features, for each of the 5 labels, per
dataset in the WSM Corpus. The models were trained in a leave-
one-out cross validation fashion. Given the limited amount of
examples in our datasets, and the comparatively large number of
features, the feature vectors were reduced in dimensionality by
eliminating the features with a Pearson correlation coefficient
(PCC) to the label below 0.2, thus only the features that carried
some linear correlation to the label were preserved.

The results are reported in precision and recall. We consider
that a good model will have a high precision measure, since
the goal is to maximize the rate of true positives. At the same
time, false negatives are not a major concern in this scenario:
we assume that the repository being mined has a much larger
number of target videos than the size of the desired dataset.

Tables 3 4 and 5 summarize the performance of the best
overall model (SVM-RBF), for depression, Parkinson’s, and
cold, respectively. The results of the remaining models are
omitted, for the sake of brevity. The cells highlighted in
gray mark models which performed equal or worse than sim-
ply choosing the majority class. These models had performed
poorly due to the limited amount of features available, and the
excecively low dimentionality of the feature set. The best per-
forming models for each dataset achieve a 93%, 100%, and 88%
precision, and 72%, 89%, and 97% recall, for the depression,
Parkinson’s and cold datasets, respectively.

The Tables show the contribution of each type of feature

Table 3: Performance of the SVM-RBF reported in precision
and recall rate in detecting target content in the depression
dataset of the WSM Corpus.

LabelModality Features Vlog 1st Person Present Target topic All
BoW 0.98 1.0 0.98, 1.0 0.73, 0.9375 0.89, 0.89 0.86, 0.67Text Sentiment 0.91, 1.0 0.77, 0.96 0.52, 0.66 0.52, 0.71 0.33, 0.17

Speech #Speakers 0.91, 1.0 0.85, 0.91 0.56, 0.69 0.69, 0.94 0.0, 0.0
#Faces 0.91, 1.0 0.89, 0.93 0.69, 0.75 0.72, 0.94 0.0, 0.0

#Keyframes 0.91, 1.0 0.84, 0.96 0.56, 0.88 0.72, 0.97 0.0, 0.0Video
Color hist. 0.91, 1.0 0.77, 0.98 0.69, 0.78 0.80, 0.89 0.75, 0.33

Metadata Metadata 0.91, 1.0 0.77, 0.98 0.62, 1.0 0.60, 0.97 0.0, 0.0
All All 0.981, 1.0 0.93, 0.96 0.83, 0.91 0.89, 0.91 0.93, 0.72

Table 4: Performance of the SVM-RBF reported in precision
and recall rate in detecting target content in the Parkinson’s
disease dataset of the WSM Corpus.

LabelModality Features Vlog 1st Person Present Target topic All
BoW 1.0, 0.86 0.74, 0.82 0.81, 1.0 0.91, 1.0 1.0, 0.89Text Sentiment 0.71, 0.71 0.69, 0.71 0.77, 0.49 0.73, 0.95 0.88, 0.39

Speech # Speakers 0.48, 0.69 0.56, 1.0 0.57, 1.0 0.71, 1.0 0.0, 0.0
# Faces 0.63, 0.94 0.58, 0.85 0.58, 0.89 0.75, 0.95 0.0, 0.0

# Keyframes 0.55, 0.89 0.51, 0.82 0.54, 0.89 0.72, 0.91 0.0, 0.0Video
Color hist. 0.76, 0.71 0.69, 0.73 0.70, 0.60 0.69, 0.95 0.0, 0.0

Metadata Metadata 0.73, 0.77 0.49, 0.76 0.56, 0.77 0.70, 0.98 0.0, 0.0
All all 0.97, 0.91 0.87, 0.82 0.80, 0.91 0.90, 1.0 1.0, 0.89

to the overall performance, as well as the performance of the
model in identifying each intermediate label correctly, and the
final label. The type of features that has the most impact are the
text features, concretely, the Bag-of-words, for every dataset,
and for every label. They convey, in fact, for the Parkinson’s
and cold datasets, sufficient information to achieve the best per-
formance, without any other type of feature. Overall, it is not
clear which are the features, other than the bag-of-words that
consistently contribute to the good performance of the models.
Label 3 (Present) was the hardest label to correctly estimate, in
two out of the three datasets. The results for Label 1 (Vlog)
are not reported for Table 5, because the cold dataset did not
contain enough negative examples to allow model training. We
note that some feature types, such as the number of speakers or
the number of scenes, are seldom capable of generating a good
model, probably due to the limitations of the feature extraction
techniques.

5. Comparing the WSM Corpus to Datasets
Collected in Controlled Conditions

Neural networks trained with data collected in controlled con-
ditions, were used to detect pathological speech in the WSM
Corpus and their original test datasets. We only report results
for the depression and cold corpus, since at the time of making
this work we did not have a dataset for Parkinson’s detection
using speech.

Table 5: Performance of the SVM-RBF reported in precision
and recall rate in detecting target content in the cold dataset of
the WSM Corpus.

LabelModality Features Vlog 1st Person Present Target topic All
BoW NA 1.0, 1.0 1.0, 1.0 0.95, 1.0 0.88, 0.97Text Sentiment NA 0.81, 1.0 0.92, 1.0 0.64, 0.85 0.64, 0.53

Speech # Speakers NA 0.81, 1.0 0.92, 1.0 0.63, 1.0 0.70, 0.53
# Faces NA 0.81, 1.0 0.92, 1.0 0.72, 1.0 0.71, 0.5

# Keyframes NA 0.85, 0.98 0.92, 1.0 0.67, 0.97 0.56, 0.67Video
Color hist. NA 0.81, 1.0 0.92, 1.0 0.65, 0.93 0.60, 0.5

Metadata Metadata NA 0.81, 1.0 0.92, 1.0 0.65, 0.97 0.57, 0.40
All All NA 1.0, 1.0 1.0, 1.0 0.95, 1.0 0.88, 0.97
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5.1. Controlled Conditions Datasets

5.1.1. Depression

The depression subset of the Distress Analysis Interview Cor-
pus - Wizard-of-Oz (DAIC-WOZ) [20] is an audio-visual
database of clinical interviews. It consists of 189 sessions rang-
ing between 7 and 33 minutes, 106 of which are present in the
training set, and 34 in the development set. For each of these
sessions a score is provided in the PHQ-8 [21] scale as a mea-
sure of depression. Of the 106 participants in the training parti-
tion, 30 are considered to be depressed. In the development set,
34 subjects are classified as depressed [22].

5.1.2. Cold

The Upper Respiratory Tract Infection Corpus (URTIC) [2] is a
dataset provided by the Institute of Safety Technology of the
University of Wuppertal, Germany, for the Interspeech 2017
ComParE Challenge. It contains recordings of spontaneous and
scripted speech. The training and development partitions com-
prised 210 subjects each, but only 37 had a cold. The two par-
titions include 9,505 and 9,565 chunks of 3 to 10 seconds, re-
spectively [2].

5.2. Feature Extraction

For depression and cold datasets, we used extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) features, a
set of 88 acoustic features designed to serve as a standard for
paralinguistic analysis [23].

The DAIC and URTIC corpus were already segmented. The
WSM Corpus underwent automatic diarization, prior to feature
extraction, using LIUM, to eliminate silent segments, and di-
vide the speech signal into inter-pausal units. The segments
that did not belong to the main speaker were discarded. The
minimum segment length was set to 200ms.

5.3. Model

We follow a simple neural network structure for the model. It
consists of three layers: an input layer with 120 units, a hid-
den layer with 50 units, and an output layer with one unit. The
first two layers share the same structure, first a Fully Connected
(FC) layer, followed by a Batch Normalization (BN) layer, and
an Activation layer with Rectified Linear Units (ReLUs). The
output layer is characterized by a FC layer with a sigmoid acti-
vation. During training, Dropout layers are also inserted before
the second and third FC layers. Both the Dropout and the BN
layers in the network help prevent the model from overfitting
[24] [25]. These forms of regularization are important in this
case, due to the limited size of the training data.

Before training the network, the training set is zero-
centered and normalized by its standard deviation. The values
of the mean and standard deviation of this set are later used to
zero-center and normalize the development set.

The model was implemented in Keras[26], and was trained
with RMSProp, using the default values of this algorithm to-
gether with a learning rate of 0.02 and 100 epochs. To determine
the best dropout probabilities for each dropout layer, a random
search was conducted yielding the following values: 0.092 and
0.209 in the depression model; and 0.3746 and 0.5838 for the
second cold model, for the first and second dropout layers, re-
spectively.

To compensate for the unbalanced labels on the training
partitions of the depression and cold datasets, we attribute dif-

Table 6: Comparison of the performance in UAR of the Neural
Networks to detect pathological speech in datasets collected in
controlled environments versus data collected in-the-wild.

Voice
affecting
disiease

Controlled Conditions
Dataset WSM Corpus

Train
(segment level)

Development
(segment level)

Development
(segment level)

Development
(speaker level)

Depression 60.59 60.57 54.79 61.94
Cold 59.95 66.92 53.11 54.81

ferent weight to samples of the positive and negative class:
0.8/0.2 for depression, and 0.9/0.1 for cold.

5.4. Results

The performances in precision and recall of the neural networks
against the WSM Corpus versus existing datasets of data col-
lected in controlled conditions are summarized in Table 6. As
expected, given the greater variability in recording conditions
(p.e. microphones, noise), the performances of the networks
when faces with in the wild data decrease when compared to
data collected in controlled conditions. However, it is possible
to improve the classification at speaker level, versus at segment
level by aggregating the segments for each speaker, as the last
column of Table 6 shows, particularly in the case of depression.
The subject level prediction, obtained by computing a weighted
average of the segment level predictions, in which the weighting
term is given by the segment length.

We hypothesize that an additional justification for the per-
formance drop is the greater variability in the speech alterations
of e speakers in the in-the-wild datasets, given that their dis-
course is not bounded, as could be the case in a controlled en-
vironment, thus facing the networks with unseen speech alter-
ations.

6. Conclusion
This work established a baseline for collecting disease specific
datasets of in-the-wild data, containing instances of speech af-
fecting diseases, based on mining multimodal online reposito-
ries. We demonstrated the viability of this process for three
diseases: depression, Parkinson’s, and cold, which leads us to
believe that the process is generalizable to collect datasets for
any disease. Given its modular nature, each component of the
system, can be individually improved.

The best performing models achieved a precision of 93%,
100%, and 88%, and a recall of 72%, 89%, and 97%, for the
dataset of depression, Parkinson’s, and cold respectively, in the
task of filtering videos containing speech affecting diseases.

At the same time, we compared the WSM Corpus to
datasets of data collected in controlled conditions. The perfor-
mance in precision and recall of the existing models decreased
when faced with in-the-wild data, compared to data collected in
controlled conditions. We hypothesize this is due to a greater
variability in recording conditions (p.e. microphone, noise) and
in the effects of speech altering diseases in the subjects’ speech.

For future work, we will focus on three problems: collect-
ing and making available larger datasets of several speech af-
fecting diseases, thus increasing the dataset resources available
for medical applications; improving the performance of each
individual module of our proposed system, replacing them with
disease specific tools; and most importantly, moving towards
a completely unsupervised data collection system, by dropping
the label requirements during the training stage.
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