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Abstract 

Mismatch between training and testing utterances can 

significantly degrade the performance of language 

identification (LID) systems, especially in the case of short 

duration utterances. This work explores the hypothesis that 

long-term trends are less affected by this mismatch compared 

to short-term features. In particular, it proposes the use of 

features based on temporal envelopes within sub-bands. In this 

work, the temporal envelopes are obtained using linear 

prediction in the frequency domain. These envelopes are then 

transformed into cepstral features. The proposed features are 

then used as a front-end to a bidirectional long short term 

memory recurrent neural network to identify languages. 

Experimental evaluations on the AP17-OLR dataset under 

different conditions indicate that the proposed features exhibit 

substantially greater robustness under different noise and 

mismatch conditions, compared to baseline features. 

Specifically, the proposed features outperform state-of-the-art 

bottleneck features and show a relative improvement of 38.4% 

averaged across the test set. 

Index Terms: Language Identification, Frequency domain 

linear prediction, Bottleneck features, Temporal envelope 

features, Bidirectional modelling 

1. Introduction 

The use of phonotactic features for language identification 

(LID) is the most promising approach to building LID systems 

to date [1-3]. Advances in deep learning methods to extract 

phonotactic features make the process much easier due to the 

availability of large data sets and their modeling capabilities. 

Over all, deep bottleneck features (BNF) [4] have achieved 

significant performance gains for LID. It is hard to find a 

recent system that does not use a BNF based front-end as a 

feature extractor for LID tasks [5-7]. The variations of 

speakers, background noise, speech content and channel 

effects make the LID task more challenging. Hence, it is 

important to explore language characteristics and information 

of speech statistics rather than the speech itself. Statistics of 

the phonemic constraints and language information are 

captured by either BNF or the phonotactic representation 

output from a phone recognizer (e.g. PLLR features) [1]. 

However, the performance of a LID system relies heavily on 

the effectiveness of the phone recognizer and also consumes 

significant amounts of time. 

On the other hand, the spectral distribution of each 

language is mainly captured by acoustic features. Extracting 

these acoustic features is an efficient process and there is no 

requirement for linguistic information. The most popular 

acoustic features for LID are shifted delta coefficients and 

eigen features [3], estimated from traditional Mel-frequency 

cepstral coefficients [8] and perceptual linear prediction 

features [9]. Typically, when using phonotactic or acoustic 

features, the commonly used system is total variability 

modelling (i-vectors) followed by a GMM-UBM back-end. 

Despite all the recent advances in LID, short duration 

utterances still suffer significant performance degradation due 

to various mismatch conditions [10, 11]. Interestingly, 

backend modelling by deep neural network (DNN) based 

approaches showed promising gains compared to well-known 

UBM i-vector approaches [12, 13]. Even though there are 

different DNN based approaches to short duration LID tasks, 

bidirectional long short term memory (BLSTM) recurrent 

neural network based LID systems are able to achieve 

significant performance gains by capturing robust sequential 

information from the given input features [14].  

In this paper our primary work is to introduce novel 

features that have higher descriptive and discriminative 

capabilities for short duration LID tasks. We develop a LID 

system using features extracted from sub-band temporal 

envelopes, followed by end-to-end bidirectional modelling.  

2. Features for LID 

Speech analysis typically relies on spectral content estimated 

from short windows of about 10-20ms, and produces frame 

level short term spectral features [8]. These acoustic features 

mostly carry information related to formants. Consequently, 

the dynamics of the speech signal are captured by the 

derivatives of these features [3]. However, these feature 

extraction techniques may be highly vulnerable in the 

presence of convolutive and additive nose, i.e. mismatches 

between training and testing data.  Although the BNF 

proposed in [4], perform well for LID, these features are still 

based on short term spectral features. Therefore, use of these 

features for so-called DNN based approaches, including 

BLSTM LID systems, causes significantly degraded 

performance due to mismatch conditions [6]. The two most 

prominent mismatch conditions are channel and duration 

mismatch. Duration mismatch occurs when the system is 

trained on fixed length utterances and tested on different 

length utterances. DNNs are also generally trained on 

sequence lengths on the order of tens of frames, and thus have 

poor performance when evaluated on utterances that are a few 

seconds long [15]. Channel mismatch occurs when training 

and testing data comes from two different channels.  

An alternative way to analyze speech signals is to look for 

long term temporal features which may help reduce the 

mismatch in duration while training and testing sequence 

based systems like BLSTMs. In [16], speech envelope based 

frequency domain linear prediction (FDLP) features were 
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proposed for robust phoneme recognition and were shown to 

have higher accuracy rates. Borrowing the concept of FDLP, 

we investigate temporal envelope based features for 

bidirectional modelling of short duration language 

identification task in this paper. 

2.1. Frequency domain linear prediction 

Spectral domain linear prediction was first proposed in [17], 

and later evolved into the so-called frequency domain linear 

prediction (FDLP) [16] that represents a smoother version of 

the instantaneous energy of the speech signal. The FDLP 

envelope captures the structure of speech, e.g. the amplitude 

modulation component, whereas the residual error of the 

FDLP envelope characterizes fine variations of the signal, like 

frequency modulated components. We believe that this 

approximated smoother envelope might able to mitigate 

mismatch, leading to better feature modelling ability for LID 

tasks. 

2.2. Proposed temporal envelope features for LID 

Figure 1 shows a schematic diagram for the implementation of 

FDLP.  First, the discrete cosine transform (DCT) is applied to 

the input speech signal 𝑠[𝑛] with 𝑁 samples, and transformed 

into the frequency domain equivalent 𝐶[𝑘], where 𝑘 =
0,1 … 𝑁 − 1, as 

 𝐶[𝑘] =  √
2 − 𝛿𝑘

𝑁
 ∑ 𝑠[𝑛]𝑐𝑜𝑠 [

𝜋

𝑁
(𝑛 +

1

2
) 𝑘]

𝑁−1

𝑛=0
  (1) 

where 𝛿𝑘 is 1 when 𝑘 = 0 and 0 otherwise. The 𝑖𝑡ℎ sub-band 

DCT component is then yielded by multiplying the full-band 

DCT with the 𝑖𝑡ℎ mel filter 𝐻𝑖[𝑘] as 

 𝑌𝑖[𝑘] =  𝐶[𝑘] ∙ 𝐻𝑖[𝑘] (2) 

     The output from each filter bank 𝑌𝑖 is used to calculate 

linear prediction coefficients 𝑎𝑟
𝑖  using the autocorrelation 

method [18]. Finally, the temporal envelope of the speech 

signal from each filter is calculated by taking the ‘frequency’ 

response of the linear predictor,   

 𝑠̂𝑖[𝑔] =  |
1

1 + ∑ 𝑎𝑟
𝑖 𝑒−𝑗2𝜋𝑔𝑏

𝑟=1

|

2

 (3) 

where 𝑏 is the number of poles and the response is evaluated 

at points 𝑔 = [0, 1, … , 𝐺 − 1]. The specific energy maxima in 

the time domain signal can be directly correlated with the 

resulting individual poles. By fixing a specific number of 

poles in a given interval, we tend to calculate only a fixed 

number of distinct energy peaks. Unlike any other peak 

detection method, the above method has the ability to 

approximate these dominant peaks well and remove finer-

scale details, which is beneficial for LID tasks.  

     To reduce the number of samples in the estimated signal 𝑠̂𝑖 

from band 𝑖, we introduce three types of energy integration 

methods to estimate compact feature representations: temporal 

average magnitude (TAM), temporal centroid magnitude 

(TCM), and temporal centroid distance (TCD). 

TAM: First, the FDLP envelope sequence 𝑠̂𝑖[𝑔] is multiplied 

by a hamming window 𝑤ℎ[𝑧], then averaged across the 

window as 

 𝑇𝐴𝑀𝑖[𝑝] =  
1

𝐿
 ∑ 𝑠̂𝑖[𝑝𝑀 − 𝑧] ∙ 𝑤ℎ[𝑧]

𝐿

𝑧=1
 (4) 

where the window length 𝐿 is smaller than the sequence length 

𝑁, 𝑝 is frame index, and  𝑀 is the separation between frames. 

TCM: The TCM is the weighted average (centroid) 

magnitude for a given time frame, given as 

 𝑇𝐶𝑀𝑖[𝑝] =  
∑ 𝑠̂𝑖[𝑝𝑀 − 𝑧] ∙ 𝑟𝑖[𝑝𝑀 − 𝑧]𝐿

𝑧=1

∑ 𝑟𝑖[𝑝𝑀 − 𝑧]𝐿
𝑧=1

 (5) 

where, 𝑟𝑖[𝑔] is a suitable weighting term. The TCM captures 

the first order energy distribution at each frame. 

TCD: In order to obtain an abstract representation of the 

centroid magnitude variation with respect to the centroid of 

each window as, 

𝑇𝐶𝐷𝑖[𝑡] = |
∑ 𝑠̂𝑖[𝑝𝑀 − 𝑧] ∙ 𝑟𝑖[𝑝𝑀 − 𝑧]𝐿

𝑧=1

∑ 𝑠̂𝑖[𝑝𝑀 − 𝑧]𝐿
𝑧=1

−
∑ 𝑟𝑖[𝑝𝑀 − 𝑧]𝐿

𝑧=1

𝐿
|

−1

 

(6) 

This can detect the approximate location of formants in each 

frame.  

3. Feature extraction and experimental 

setup 

The complete experimental setup is shown in Figure 2. In this 

paper our main goal is to evaluate the proposed features for 

short duration language identification when there is mismatch 

between training and testing data. For this task we use the 

AP17-OLR dataset [15] which consists of 10 different 

languages and was specifically developed for short duration 

language identification tasks. The database also has training 

and test speech from two diverse sources. Three languages 

(Japanese, Russian and Korean) are recorded in two different 

environmental conditions (designated ‘mismatched’ in this 

work), whereas all other languages have only one condition 

(‘matched’). The duration of training data for each language is 

about 10 hours of speech sampled at 16 kHz. The proposed 

system was tested on three duration conditions, namely, 1sec, 

 
Figure 1: Proposed feature extraction schematic with three types of energy integration methods to compute envelope features. 
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architecture of LID system.  

Input 
Features

BLSTM 
(1024)

Global 
Average 
Pooling

Softmax Layer 
(10)

1819



3sec and ‘all’ duration subsets of the development set. These 

subsets contain 17964, 16404 and 17964 utterances 

respectively. Given the short duration of each test utterance, 

no voice activity detection was employed. 

     The backend is a simple BLSTM system consisting of a 

single hidden layer with 1024 units, and 10 classes as the 

outputs. After the BLSTM layer, feature level averaging is 

conducted before feeding into a softmax layer. Training is 

carried out using truncated back propagation through time 

with 1s duration utterances. The proposed temporal envelope 

features (Section 3.2) are compared with baseline features 

BNF and MFCC (Section 3.1). These baseline techniques are 

chosen as they are commonly deployed in LID tasks.  

3.1. Bottleneck and MFCC feature extraction  

The BNF extraction process is based on a phonetic model, 

time-delay neural network (TDNN) [19] and was trained using 

the THCHS30 database. The raw input features to the TDNN 

are 40-dimensional Mel-filter bank coefficients, with a 

symmetric 4-frame window for the TDNN. The TDNN has 6 

hidden layers, and the activation function is p-norm. The 

number of units of each TDNN layer is set to be 2048, except 

for the last hidden layer, which has only 256 units.  

     The static MFCC features involved 47 Mel-filter banks 

using a 25-ms window and 10-ms frame-shift. Then 13-

dimensional Mel frequency cepstral coefficients (MFCCs) 

were calculated for each frame [20]. These static features were 

augmented by their first and second order derivatives, 

resulting in 39-dimensional feature vectors. 

3.2. Temporal envelope feature Extraction 

The proposed features are extracted using 47 mel filters 

implemented in the DCT domain over a one second window 

(𝑁 = 16000 given a sampling rate of 16kHz), and employing 

a 160th order linear prediction model in each sub-band. The 

‘frequency response’ of linear predictor is evaluated at 400 

sample points (𝐺 = 400 in eqn. (3)).  Frame level temporal 

envelope features are estimated by the three energy 

compression methods of TAM, TCM and TCD (Section 2.2), 

choosing a 25ms window (L=10) with 10ms frame shift 

(M=4). This will result in the same number of frames as the 

baseline BNF and MFCC feature estimation methods. 

     The weighting term 𝑟𝑖[𝑔], used for TCM and TCD 

computation is chosen as, 

 𝑟𝑖[𝑔] =  𝑓𝑙
𝑖 +  

𝑓𝑢
𝑖 − 𝑓𝑙

𝑖

𝐺
 𝑔  (7) 

where 𝑓𝑢
𝑖  and 𝑓𝑙

𝑖  are the highest and lowest frequencies of the 

𝑖𝑡ℎ sub-band and 𝐺 is the number samples in 𝑠̂𝑖[𝑔]. 
     Finally, similar to MFCCs, cepstral coefficients were 

calculated for the extracted temporal envelope features and 

augmented with their derivatives.  

4. Analyzing temporal envelope features 

for LID 

In this section, we compare the differences between the 

proposed TAM features and the baseline BNF and MFCC 

features. Figure 3 compares a spectrogram obtained with a mel 

filterbank, to a spectrogram representation of the sub-band 

envelopes estimated by the proposed method for a Cantonese 

speech segment of duration 1sec. It can be seen that the 

proposed TAM spectrogram is less noisy compared to the mel 

spectrogram while retaining the spectro-temporal energy 

structure in speech. 

4.1. Robustness in channel noise 

Typically, a noisy speech signal can be modelled with the 

addition of convolutional channel noise and additive 

background noise. Here, there is a need for robust features that 

suppress these type of noise distortions.  Figure 4 compares 

the mean squared error between features in clean conditions 

and those extracted under several noisy conditions (babble 

noise of varying SNR, babble noise was chosen since it has 

similar spectral characteristics to the speech signal and hard to 

distinguish from it) for both MFCCs and the proposed TAM 

features, where the features are estimated from 10% of the 

training data from each language. It is evident from Figure 4 

that the TAM envelope provides greater robustness to noise. 

 
Figure 4: Comparison of MFCC and TAM features in 

different babble noise conditions (-10:5:10dB SNR). 

 

 

 

 
Figure 5: Comparison of TAM, TCM and TCD for a 1s 

duration of Cantonese Chinese recording. 
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Figure 3: Comparison of (a) an MFCC spectrogram, and 

(b) a TAM spectrogram representation for a 1s duration 

of Cantonese Chinese recording. 
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This phenomenon is directly applicable when training and test 

data comes from two different sources, i.e. mismatched 

conditions. 

In order to study the effect of the finer spectral resolution 

in the proposed feature extraction technique, Figure 5 shows 

the analysis of the dynamics of TAM, TCM and TCD features. 

The variation with respect to time of each feature has a similar 

pattern. However, while TAM and TCM sit nearly on top of 

each other, TCD shows quite different variations.  

5. Experiments and results  

Table 1 compares the performance of the baseline BNF and 

TAM features in terms of Cavg, which is the primary 

evaluation measure for the AP17-OLR dataset [15]. It is clear 

that TAM has significant improvement of 25.62% relative to 

the baseline BNF features for 1s duration utterances. Note that 

this improvement is much greater (34.6%) in ‘mismatch’ 

condition languages (Japanese, Russian, and Korean) 

compared to ‘matched’ languages (17.66%). Therefore, it is 

evident that TAM features are more robust to mismatch 

conditions. 

     To investigate the performance of the proposed feature 

extraction methods, we evaluated the system performance for 

different durations of utterances. The LID results for the 

baseline systems and the proposed envelope features are 

shown in Table 2. All features in Table 2 were tested using the 

BLSTM system (Section 3) except for BNF_LSTM system, 

which uses the LSTM system in [15] (included for fair 

comparison with other systems to date). The results suggest 

that the proposed envelope features improve performance for 

all three duration conditions, providing evidence for the 

suppression of mismatch of duration in training and testing 

conditions. Even though the BLSTM system was trained on 1s 

duration utterances, the highest gain when comparing BNF 

and TCM (55.5%) comes from the 3s duration test condition, 

decreasing Cavg from 0.0668 to 0.0297. The TAM results 

show an average 38.4% relative improvement with respect to 

the BNF, and suggest that the modeling of high-energy 

regions in time-frequency domain is beneficial in mismatch 

conditions. 

     Moreover, the TCM features achieved similar performance 

to the TAM features. On the other hand, the TCD features fail 

to outperform any other features independently, so score 

fusion was conducted using the Focal toolkit [21] to compare 

feature interdependency further. The fusion of TCD and TAM 

features shows the availability of the complementary 

information in TCD, showing its benefit as an additional 

feature set for LID tasks. Moreover, BNF and TAM features 

are also complementary. The best fusion system performance 

gain was by BNF, TAM and TCD systems together, with an 

average relative improvement of 68.57% over the baseline 

BNF.  

6. Conclusions 

In this paper, we have proposed envelope based frame level, 

frequency domain linear prediction (FDLP) features (TAM, 

TCM and TCD) for short duration language identification 

tasks. Estimates of temporal envelopes within sub-bands of 

speech are initially obtained and the features are extracted 

from these envelopes. Various experiments are performed 

with AP17-OLR data, where the proposed features provide 

significant improvements over state-of-the-art BNF features. 

Further, we showed the robustness of features compared to 

existing spectral features, specifically MFCCs. Compared to 

the existing bottleneck features the results are promising and 

encourage further investigation of the FDLP domain for LID 

tasks. 
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