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Abstract
The recent speaker embeddings framework has been shown to
provide excellent performance on the task of text-independent
speaker recognition. The framework is based on a deep neu-
ral network (DNN) trained to directly discriminate between
speakers from traditional acoustic features such as Mel fre-
quency cepstral coefficients. Prior studies on speaker recogni-
tion have found that phonetic information is valuable in the task
of speaker identification, with systems being based on either
bottleneck features (BFs) or tied-triphone state posteriors from
a DNN trained for the task of speech recognition. In this pa-
per, we analyze the role of phonetic BFs for DNN embeddings
and explore methods to enhance the BFs further. Experimen-
tal results show that exploiting phonetic information encoded in
BFs is very valuable for DNN speaker embeddings. Enriching
the BFs using a cascaded DNN multi-task architecture is also
shown to provide further improvements to the speaker embed-
ding system.
Index Terms: speaker recognition, speaker embeddings net-
work, x-vector, bottleneck features, stacked bottleneck, multi-
task learning

1. Introduction
In recent times, i-vector systems have been very successful
as discriminative models to model the speaker and channel
variability in the i-vector space [1]. A notable performance
improvement has been observed after deep neural networks
(DNNs) trained for automatic speech recognition (ASR) were
integrated into the speaker verification task. One such method
replaced the standard GMM modelling technique for acoustic
speech modelling [2, 3, 4]. This technique relies on collect-
ing sufficient Baum-Welch statistics corresponding to the tra-
ditional acoustic features from the DNNs and then models the
speaker identity into a single low-dimensional i-vector space.
An alternative technique incorporates phonetic information in
the i-vector system by using BFs from the same DNN and con-
catenating it with traditional acoustic features [4]. A later study
demonstrated that BFs were most valuable in the calculation of
the zero-order statistics but tends to harm calibration of the sys-
tem if it is included in the calculation of the first order statistics
[5].

More recently, an end-to-end DNN system for speaker ver-
ification has attracted attention, to classify speakers by com-
bining all the steps in traditional DNN/i-vector PLDA sys-
tems. These systems have shown very promising results for
text-dependent as well as text-independent speaker verifica-
tion tasks. Different speaker embedding systems have been
proposed recently, including “d-vector” for speaker dependent
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tasks [6], and the “x-vector” system for speaker independent
tasks [7, 8, 9]; the latter forms the fundamental system of this
study on speaker embeddings. The main objective of these
frameworks is to maximize same speaker probability, and to
minimize between speaker and domain mismatch probability,
thus embedding the speaker discriminant information during the
DNN training. Yet to be explored is the role of phonetic infor-
mation in the context of speaker embeddings, which forms the
focus of this study.

This work aims to uncover the role that phonetic informa-
tion plays in the speaker embeddings framework. This is ac-
complished by leveraging phonetically-rich BFs as input to the
embeddings network. The BFs have been successfully applied
in language and speaker identification tasks [4, 10, 11, 12]. The
BFs are typically obtained from one of the internal layers of a
DNN (with a small number of hidden units in comparison to
the size of the other layers) and represent a nonlinear transfor-
mation of the input features into a low dimensional represen-
tation. As the DNN from which BFs are extracted is trained
to be rich in phonetic content and is speaker-independent, one
might assume there to be limited speaker information in the
BFs. However, we demonstrate that the embeddings network
cannot only exploit the speaker information from these features
but also leverage the phonetic content to provide a more robust
speaker embeddings space. In addition, we also investigate a
multi-task learning setup to enhance the BFs for the speaker
recognition task. For multi-task experiments, the auxiliary task
is to discriminate between speakers in order to force the net-
work to be ‘speaker-aware’ [13]. Multi-task learning has been
very successful in automatic speech recognition and natural lan-
guage processing tasks before [14, 15]. In this work, we show
that enriching the BFs further with speaker discriminative in-
formation, improves the performance of DNN based speaker
embedding systems as well. We found that a multi-task DNN
architecture produces superior BFs compared to a DNN trained
only to predict senone posteriors.

This paper is organized as follows: Section 2 details some
recent works on speaker embedding systems, Section 3 intro-
duces the role of phonetic information for embedding system
training and Section 4 describes the baseline system, where
DNN embeddings architecture, i-vector baseline and PLDA
backend scorer are described chronologically. The experimental
methodology and corresponding results are described in Section
5 and Section 6, respectively. Finally, Section 7 concludes the
paper.

2. DNNs in speaker recognition
Recently, Variani et al. [6] proposed a DNN-based background
modelling approach to directly model the speakers for text de-
pendent task by computing the average of activations from the

Interspeech 2018
2-6 September 2018, Hyderabad

3593 10.21437/Interspeech.2018-1804

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1804.html


last hidden layer and referred this model as “d-vector”. In this
approach, the background DNNs are used as speaker specific
feature extractors instead of speaker acoustic feature extractor
like traditional DNN/i-vector framework. The DNNs are fed
with 40-dimensional log filterbank energy features extracted
from each feature frame, stacked together with its left and right
context frames. The number of outputs of the DNN is equal
to the total number of speakers in the development set. The
d-vectors are extracted by accumulating output activations of
the last hidden layer using standard feedforward propagation in
the trained DNN, to represent the speaker model. In the eval-
uation phase, both target and test d-vectors are extracted and
compared using the cosine distance to achieve the desired sim-
ilarity score. Heigold et al. [16] proposed an end-to-end text-
dependent speaker verification framework to discriminate be-
tween the same and different speaker utterances. The DNNs
used in this framework consist of several non-linear hidden lay-
ers to transform utterances into the d-vectors. This network uses
a locally-connected layer and several fully connected layers us-
ing the rectified linear unit (ReLU) activation function [17] and
fully connected linear output layer to produce speaker embed-
dings. The DNN parameters are optimized by minimizing the
cross-entropy loss function, and the d-vectors are estimated by
averaging the activation of the last hidden layer over all feature
frames. Finally, the cosine similarity scoring (CSS) classifier is
used to estimate the desired similarity score between the target
and test d-vectors.

Li et al. [18] proposed another deep speaker embedding
system by investigating two deep architecture including ResNet
style [19] deep CNN and the Deep Speech 2 (DS2)-style archi-
tecture consisting of convolutional layers followed by GRU lay-
ers. In these architectures, instead of pooling layer [7], a tempo-
ral average layer is used to convert frame-level activations into
speaker representation. They also used a triplet loss layer [20]
to minimize the variability between same speaker embeddings
and maximize the variability between different speaker embed-
dings. The triplet loss model uses three utterances, one utter-
ance from the target speaker (anchor), another utterance from
the same speaker as a positive example and another utterance
from different speaker as negative example. The triplet model
is trained in such a way that the cosine similarity between the
anchor and the positive example is higher than the cosine simi-
larity between the anchor and the negative example.

Snyder et al. [7, 8, 9] introduced another end-to-end ap-
proach that can handle variable length of the utterances for the
text-independent task. Their proposed architecture uses a feed-
forward DNN, which maps the stacked MFCCs fed as input to
the network into a speaker embedding. The objective function
is used to maximize the speaker probability for the embedding
from speakers and minimize the probability for the embedding
from different speakers. This network consists of five hidden
layers, followed by a temporal pooling layer. This pooling layer
estimates the average and standard deviation of the previous
hidden layer and pass it to the last hidden layer. The output
layer produces linear speaker embedding termed as “x-vectors”.

3. Role of phonetic information
To the best of our knowledge, the role of phonetic information
in the recent speaker embedding framework has not been ex-
plored for speaker recognition. It has, however, been leveraged
in language embeddings in the related field of language recog-
nition [10, 11]. In this study, we focus on exploiting phonetic
information in the embeddings DNN by feeding phonetically

Figure 1: DNN architecture with stacked bottleneck features.
The second DNN could either employ multi-task learning for
training both primary and secondary tasks, or only the primary
task in a single-task learning scenario. The bottleneck features
from the second DNN is used as input to the DNN x-vector sys-
tem.

rich features into the network as opposed to traditional MFCCs.
The approaches to producing these phonetically rich features
are described in this section.

3.1. Bottleneck features

Our system for extracting BFs consists of two distinct DNNs,
where both DNNs contain bottleneck layer. Figure 1 shows the
network architecture with stacked BFs used in this study. We
use a DNN that is distributed as a part of the baseline system in
the NIST LRE’17 evaluation [21] as the first ASR DNN for BFs
extraction. This DNN is trained on speech data from combined
switchboard (SWB1) (∼319 hours) and Fisher corpora (∼2000
hours) corpus with around 8700 senone targets. This model in-
cludes seven hidden layers including the bottleneck layer. Each
hidden layer except the bottleneck layer uses the ReLU activa-
tions.

3.2. Stacked bottleneck features

The stacked BFs (SBNF) are extracted from the second DNN,
where we only use the switchboard (SWB1) corpora (∼319
hours) to train the second ASR DNN with the BFs extracted
from the first DNN. These features are then used to train the
GMM/HMM systems to provide the state alignments for train-
ing the second DNN. The feature-space maximum likelihood
linear regression (fMLLR) for speaker adaptation is applied
to the BN features prior to DNN training. The second DNN
includes six hidden layers including the bottleneck layer (80
units) with 9784 senone targets.

3.3. Multi-task learning of Stacked Bottleneck features

For multi-task learning experiments, the second DNN is trained
to predict senone posteriors and speakers at the same time.
The aim is to train a single DNN architecture to solve in par-
allel the primary task with additional, closely related tasks
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Figure 2: DNN architecture of the speaker embeddings (x-
vector) system.

that will improve the generalization of the model. This is
achieved through a shared representation (i.e., weight sharing).
In this study, the main task is the senone posteriors estima-
tion (i.e., ASR) and the secondary task focuses on recogniz-
ing/classifying speakers. It is hypothesized that the network is
able to gain contextual information about the speakers and im-
prove the speaker-dependent representations which are benefi-
cial for speech recognition task [12, 13]. The features extracted
from the bottleneck layer of this DNN, termed as multi-task
stacked bottleneck features (MT SBNF), are later fed into the
embedded system training to enhance the system performance.

4. System description
4.1. Speaker embeddings network

In this work, we use a feedforward end-to-end DNN architec-
ture that embeds the speaker information directly into the DNN
architecture to classify speakers from the training data proposed
by Snyder et al. [7, 8, 9]. Figure 2 shows the structure of this
end-to-end DNN architecture. The first 5 layers perform on
frame level with small temporal contexts for the training, fol-
lowed by a statistics pooling layer, which aggregates all frames
for utterance level representation and computes mean and stan-
dard deviation. The statistics pooling layer is followed by an-
other two hidden layers operating on the utterance level and fi-
nally the output softmax layer. However, the last two layers are
removed, and speaker embedding features are extracted from
the layer 6.

4.2. I-vector systems

Speaker embeddings networks have been shown to outperform
the prior state-of-the-art system in a number of scenarios [8, 9].
In this work, we also present a comparison of an i-vector
pipeline to our embeddings pipeline which supports the con-
clusions of these prior studies. The traditional i-vector based
speaker verification system was the state-of-the-art technology
for a very long period of time. In the i-vector system, in-
stead of modelling speaker and channel variability separately,
a low dimensional total-variability space is used to represent
both speaker and channel models together. In this paper, we

used three i-vector frameworks as baseline systems. In the
first system, an UBM with 2048 components is used to map
the 13 dimensional feature-warped MFCCs with ∆ and ∆∆
coefficients into higher dimensional feature space. Later 500-
dimensional i-vector extractor is used to reduce its dimension
into a low-dimensional subspace defined by the matrix T. In the
second framework, an ASR DNN is used instead of UBM for
collecting sufficient statistics for i-vector extractor training. A
multi-splice TDNN is trained with six hidden layers and splic-
ing configuration. The hidden layers use a p-norm activation
function (where p = 2). The input layer takes 39-dimensional
MFCC features with five-frame temporal context, and cepstral
mean subtraction (CMS) performed over a window of six sec-
onds. Each hidden layer has 350 nodes, the output dimension
is 3500, and a softmax output layer computes posteriors for
5,346 senone targets. The force-alignment is applied between
state-level transcripts and corresponding speech signals to gen-
erate HMM state-alignment labels for DNN training. Finally, in
the third framework, 80-dimensional phonetic BFs are extracted
from the ASR DNN to train the i-vector extractor [4]. The hid-
den and softmax layers are removed in this framework, as they
are not required for BN feature extraction.

4.3. PLDA backend scoring

In this paper, we use a PLDA backend scorer for both i-vector
and embedding systems to compute scores between target and
test data. Prior to the PLDA scoring, the dimension of the data
(including both i-vectors and embedding) is reduced to 150 us-
ing LDA sub-space transformation. Later, length normaliza-
tion is applied prior to GPLDA modelling. Two hypotheses are
tested: whether both sessions are from the same speaker and
share the same speaker factor, or that they are from the different
speaker and have different speaker factors. The scoring between
the target and test data is calculated using the batch likelihood
ratio [22]. For a given target sample wtarget and test sample
wtest, the batch likelihood ratio can be calculated as follows,

ln
P (wtarget,wtest | H1)

P (wtarget | H0)P (wtest | H0)
(1)

where H1: The speakers are same, H0: The speakers are differ-
ent

5. Experimental methodology
The training dataset is derived from both NIST and SWB
datasets containing 3,769 speakers, in a total of 5,4450 sessions
collected from NIST-2004, 2005, 2006, 2008 SRE and Switch-
board I, II phase I, II, III corpora. This training dataset is used
for both i-vector and DNN speaker embeddings training. In or-
der to increase the data diversity for DNN speaker embeddings
training, we use data augmentation recipe proposed by Snyder
et. al [9]. This data augmentation is performed via adding dif-
ferent levels of noise collected from MUSAN dataset includ-
ing babble, music, and noise; and reverberation via convolution
with simulated room impulse responses (RIR) [23]. We eval-
uate our proposed systems on NIST 2010 extended core-core
conditions. The performances are measured using equal error
rate (EER).

For speaker modelling, 13-dimensional feature-warped
MFCCs with appended delta coefficients are extracted from raw
speech signal using 25 ms frames with 10 ms frameshift. Later,
we apply VAD to remove the silence frames from the MFCC
feature stream. An UBM of 2048-mixtures is trained and used
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Table 1: Performance comparison of baseline speaker recogni-
tion systems, evaluated on NIST-2010 extended core-core con-
dition

Approach NIST-2010 core-core
EER

UBM/i-vector 3.05%
DNN/i-vector 2.54%
BNF i-vector 1.98%

x-vector system 2.83%
x-vector system (aug) 1.67%

for Baum-Welch (BW) statistics calculation for total-variability
space training and i-vector extraction. Later, 500-dimensional
i-vector extractor reduces the dimension of the GMM supervec-
tor into a low-dimensional subspace defined by the matrix T. For
enhanced BN feature extraction we use two distinct ASR DNNs
as described in Section 3.2. Both of the ASR DNN models are
trained using Kaldi on a senone set with nearly 8700 targets.
Both DNNs are trained with 80 hidden units using the renorm
nonlinearity. The first ASR DNN is trained with almost 2300
hours of speech data with proper transcripts collected from both
Fisher English and SWB I corpus and the second ASR DNN is
trained with only SWB I data which is around 319 hours of
speech data. The BN features extracted from the first DNN
are used to train the secondary DNN with a bottleneck layer.
Later, the DNN embeddings are trained with the BN features
extracted from the second DNN. Prior to the PLDA modelling,
LDA subspace reduces the dimension of the data, where LDA
subspace is trained by selecting most significant 150 eigenvec-
tors from 500 eigenvectors based on highest eigenvalues. In this
paper, we use the Kaldi toolkit [24] to train our ASR DNN and
UBM based i-vector, as well as “x-vector” system, following
the recipe proposed by Snyder et al. [24, 9].

6. Results and discussion
Table 1 presents the performance of different baseline speaker
recognition systems described in Section 4. Experimental re-
sults clearly show that DNN/i-vector system and subsequently
BFs based i-vector systems perform significantly better than
UBM/i-vector system. Clearly, phonetic BFs play a vital role in
speaker modelling leading to superior speaker recognition per-
formance. Although, the deep embedded system shows slightly
better performance than UBM/i-vector system, i-vector systems
trained with BFs performs 30% better than deep embedded sys-
tem. However, augmenting data diversity in the deep embedded
DNN training significantly improve the speaker embeddings
system performance by 41%. These results confirm that aug-
menting the embedded system training is less sensitive to noise
and domain variations compared to the UBM/DNN i-vector sys-
tems [9, 25]. As the best performing system, we use this aug-
mented DNN speaker embeddings system for the rest of the ex-
periments in this paper.

Now, Figure 3 shows the performance of the augmented
DNN speaker embeddings system trained with phonetically en-
riched BFs. First, we investigated the effectiveness of the
BFs for x-vector system training, and the experimental results
clearly indicate that employing BFs gains at least 19.8% com-
pared to the DNN speaker embeddings trained with traditional
MFCC features. We also trained the x-vector system using BFs
extracted from the ASR DNN trained with the stacked BFs, and
this system enhances the speaker recognition performance by
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Figure 3: Performance comparison of the augmented speaker
embeddings system trained with different phonetic bottleneck
features, evaluated on NIST 2010 extended core-core condition.

23.4% over MFCC x-vector system. We also investigated the
performance of the multi-task training to enrich the BFs for x-
vector system training. Experimental results show that multi-
task training attains the best performance by achieving 8.6%
performance gain over the single-target stacked BFs system.
Clearly, stacked BN system performs significantly better than
the other systems. However, multi-task training can boost this
performance slightly by adding speaker discriminant informa-
tion into the model during ASR DNN training.

These results confirm what other studies have found that
incorporating phonetic BN features provide consistent improve-
ments in speaker recognition task using the i-vector system and
the x-vector system. We observe that system performance im-
provements can be obtained when these features are enriched
further via BFs stacking. In our experiments, the same por-
tion of data used for training the first DNN is used as input for
training the second DNN (i.e., SWB1). This suggests that BN
features extracted from the ASR DNN can be enriched by in-
corporating speaker discriminant information during ASR DNN
training, which eventually improves the DNN embeddings sys-
tem for speaker recognition.

7. Conclusions
This paper explored the possibilities of improving the speaker
embeddings system performance by employing phonetically-
rich bottleneck features for DNN embeddings network training.
Experimental results confirmed that phonetically-rich BFs ob-
tained from the ASR DNN provide more robust speaker models
compared to the traditional feature-based speaker embeddings.
We also investigated a cascaded DNN architecture BF system
to enrich the BFs in order to improve the overall system per-
formance. Moreover, this system performance can be further
enhanced by enriching the BFs with the speaker discriminant
information during multi-task ASR DNN training where the
speaker targets were used as an auxiliary task. Experimental
results showed that BFs extracted from multi-task DNN pro-
vide superior system performance compared to the other sys-
tems. Our proposed phonetically-rich embeddings networks
performance has been validated with NIST 2010 SRE. Future
work will include optimizing the speaker embedding network
together with with the ASR DNN to share more phonetically
discriminant information directly into the embeddings network.
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