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Abstract 

Nowadays, most of the objective speech quality assessment 

tools (e.g., perceptual evaluation of speech quality (PESQ)) 

are based on the comparison of the degraded/processed speech 

with its clean counterpart. The need of a “golden” reference 

considerably restricts the practicality of such assessment tools 

in real-world scenarios since the clean reference usually can-

not be accessed. On the other hand, human beings can readily 

evaluate the speech quality without any reference (e.g., mean 

opinion score (MOS) tests), implying the existence of an ob-

jective and non-intrusive (no clean reference needed) quality 

assessment mechanism. In this study, we propose a novel end-

to-end, non-intrusive speech quality evaluation model, termed 

Quality-Net, based on bidirectional long short-term memory. 

The evaluation of utterance-level quality in Quality-Net is 

based on the frame-level assessment. Frame constraints and 

sensible initializations of forget gate biases are applied to learn 

meaningful frame-level quality assessment from the utterance-

level quality label. Experimental results show that Quality-Net 

can yield high correlation to PESQ (0.9 for the noisy speech 

and 0.84 for the speech processed by speech enhancement). 

We believe that Quality-Net has potential to be used in a wide 

variety of applications of speech signal processing.  

Index Terms: speech quality assessment, PESQ, BLSTM, 

end-to-end model, non-intrusive quality assessment. 

1. Introduction 

Speech quality is a subjective opinion, based on a listener’s 

feeling to the heard speech. Therefore, objective assessment of 

speech quality is challenging especially when a clean refer-

ence does not exist (also called non-intrusive or single-ended 

speech quality assessment). Although the perceptual evalua-

tion of speech quality (PESQ) [1] is widely used to evaluate 

the speech quality in industrial applications [2-4], the need for 

a “golden” reference considerably restricts the applicability of 

such assessment tools in real-world scenarios. For example, it 

is difficult to rely on PESQ to judge the noise level for auto-

matically turning on the speech enhancement function in mo-

bile communications or automatic speech recognition (ASR). 

However, human beings can readily evaluate the speech quali-

ty without any reference. In other words, the human listening 

perception can be treated as a mapping function to map any 

speech utterance to a corresponding quality score. 

Although the ITU-T released recommendation P.563 as its 

standard algorithm for non-intrusive objective speech quality 

assessment, it is designed for 3.1-kHz (narrow band) telepho-

ny applications [5]. Several non-intrusive speech quality as-

sessment models have also been proposed [6-22]. Sharma et 

al.[8] employed classification and regression trees (CART) to 

predict the quality score based on many handcrafted features. 

Soni et al.[22] applied a subband autoencoder to first extract 

features to be used by the following neural-network-based 

prediction model. Although these methods have already 

achieved good prediction results, the features (most are com-

plex handcrafted features) used for prediction are not jointly 

optimized with the back-end assessment model (not end-to-

end). In addition, these models are simply treated as a black 

box, which also restricts the possible further applications.  

It has been shown that a quality assessment model can also 

guide another model to learn human perception [23, 24]. Spe-

cifically, Talebi et al.[24] applied an image assessment model 

as a perceptual loss in training an image enhancement model. 

By simultaneously maximizing the assessment score and min-

imizing the reconstruction loss (e.g., 𝐿2 loss), the trained en-

hancement model can generate more appealing images. The 

key in successfully combining these two models is that the as-

sessment model is also an end-to-end model and no handcraft-

ed features were involved; therefore, the gradients can be back 

propagated from the perceptual loss.  

Recently, deep learning has shown its strong capacity to 

learn a mapping function in many different applications. Here-

in, we propose a novel, end-to-end, and non-intrusive speech 

quality evaluation model, termed Quality-Net, based on bidi-

rectional long short-term memory (BLSTM). In addition, to 

prevent Quality-Net from becoming an incomprehensible 

black box, its structure is designed to automatically learn (in-

fer) a reasonable frame-level quality. This gives Quality-Net 

the ability to locate the degraded regions in an utterance. Alt-

hough our ultimate goal is to learn the mapping function of the 

human listening perception, an off-the-shelf data set with la-

bels that meets our requirements does not exist (here, we focus 

on predicting the quality of noisy speech and enhanced speech 

given by a deep-learning-based speech enhancement model). 

Therefore, we apply Quality-Net to predict the PESQ scores. 

The experimental results also serve as guidelines (e.g., number 

of data needed) for future construction of the required data set. 

In our previous work [25], we have successfully optimized 

the short-time objective intelligibility (STOI) [26] score in 

training a speech enhancement model. Although the model can 

be readily optimized by any differentiable metrics, some func-

tions in PESQ computation are non-continuous; therefore, the 

gradient-descent-based optimization cannot be directly used. 

By contrast, since Quality-Net is an end-to-end assessment 

model, it can be combined with a speech enhancement model 
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to boost the PESQ score of enhanced speech. This will be an 

important future work of this study. To our best knowledge, 

Quality-Net is the first end-to-end, and non-intrusive quality 

assessment model to yield frame-level quality. 

2. Quality-Net 

The goal of this paper is to propose a non-intrusive speech 

quality assessment model. As speech utterances have different 

lengths, this model has to map 𝒖 ∈ 𝑅𝑇(𝒖)  to 𝑄 ∈ 𝑅1, where u 

is the input speech, Q is the estimated quality score, and 𝑇(𝒖) 

is the length of the input speech u; (𝑇(𝒖) can be the number of 

sample points or number of frames in u for the time-domain-

waveform- or frequency-domain-spectrogram-based estima-

tions, respectively). To overcome this mapping restriction 

(variable-length input, fixed-length output), BLSTM is em-

ployed to mimic a human listening perception system for qual-

ity estimation through pairs of (speech utterance, quality score) 

training data. This model is called Quality-Net herein, and we 

adopt the magnitude spectrogram as the input feature. There-

fore, after reading the whole spectrogram, Quality-Net can 

predict a score for speech quality evaluation. In addition, to 

prevent Quality-Net from becoming an incomprehensible 

black box, its structure is designed to render the intermediate 

evaluation process more meaningful. Specifically, we de-

signed Quality-Net to automatically learn (infer) a reasonable 

frame-level quality even though the quality label in the train-

ing data is utterance wise. Here, reasonable frame-level quali-

ty estimation means that if noise or speech distortion occurs in 

one frame, then its quality score should be decreased accord-

ingly. Subsequently, the final estimated utterance-level quality 

score Q is obtained by combining the frame-wise scores 𝑞𝑡 

through a global average, as shown in Fig. 1. Note that the 

global average function not only solves the mapping re-

striction of the fixed-length output, but also provides 𝑞𝑡  the 

physical meaning of frame-level quality. This particular struc-

ture of Quality-Net is designed to mimic the process that peo-

ple evaluate the speech quality. In the following, we introduce 

the detailed settings of Quality-Net to infer the reasonable 

frame-level quality from the utterance-level quality label. 

2.1. Conditional constraint on frame quality assessment 

As stated in the previous section, we only have the utterance-

level speech quality labels. When the noise is not stationary 

(i.e., the frame-wise SNR is varying), or the degree of speech 

distortion is not the same across frames, it is not suitable to di-

rectly assign the utterance-level quality label to every individ-

ual frame within the input utterance. However, the incon-

sistency of utterance-level and frame-level scores becomes in-

significant when the quality of the input utterance is high (e.g., 

if the speech quality is evaluated as perfect by human, then 

there should be no degradation anywhere, and each frame can 

be assigned with a perfect score). Based on this concept, we 

incorporate a conditional frame-wise constraint in the objec-

tive function of Quality-Net: when the speech quality of the 

input utterance is lower/higher, the frame-wise constraints will 

be given lower/higher weights. Accordingly, we derive the ob-

jective function for Quality-Net as:   

O =
1

𝑆
∑[(�̂�𝑠 − 𝑄𝑠)

2
𝑆

𝑠=1

+ 𝛼(�̂�𝑠) ∑ (�̂�𝑠 − 𝑞𝑠,𝑡)
2

𝑇(𝒖𝑠)

𝑡=1

]   (1) 

where 𝛼(�̂�𝑠) is the weighting factor, which is a function of the 

true utterance-level quality based on: 
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Figure 1: Proposed Quality-Net for end-to-end, non-intrusive 

speech quality assessment. 

 

            𝛼(�̂�𝑠) = 10(�̂�𝑠−�̂�𝑀𝐴𝑋)                                (2) 

where S is the total number of training utterances; �̂�𝑠 and 𝑄𝑠 

are the true and estimated quality scores of the s-th utterance, 

respectively. 𝑞𝑠,𝑡  is the estimated frame quality of the t-th 

frame of utterance s, and  �̂�𝑀𝐴𝑋 is the maximum quality score 

in the metric (e.g., �̂�𝑀𝐴𝑋 = 5  in MOS, and �̂�𝑀𝐴𝑋 = 4.5  in 

PESQ). Note that the first term in (1) only focuses on the ac-

curacy of utterance-level quality and does not concern the dis-

tribution of frame-level quality. Nevertheless, the second term 

in (1) forces the frame-level quality to follow a uniform distri-

bution. This constraint is more significant for speeches of 

higher quality as its influence exponentially decreases accord-

ing to (2). In summary, for a high-quality speech, the estimat-

ed utterance-level quality consists of uniformly distributed 

frame-level quality with scores equal to the utterance-level 

quality score. This constraint also explicitly guides Quality-

Net to differentiate clean frames from degraded frames.   

2.2. Limited context influence 

One of the major advantages of BLSTM is that the current es-

timation considers the information from the past and future 

contexts even though they may be several time steps away. 

However, the inclusion of the context information causes the 

frame-level quality assessment in Quality-Net to not complete-

ly focus on the condition of the current frame. Note that if on-

ly some regions of a speech utterance are contaminated by 

noise, then the frame-level quality scores in the clean region 

will also be decreased. Therefore, the comparison of frame-

level quality can only hold inside an utterance, and may not be 

compared between different utterances. For example, given a 

noisy utterance N, if a frame, 𝒙𝑁,𝑐, and another frame, 𝒙𝑁,𝑛 , 

are present in the clean and noisy regions, respectively, then 

𝑞𝑁,𝑐 > 𝑞𝑁,𝑛  should hold properly for Quality-Net. However, 

given another clean utterance C, if there is a clean frame, 𝒙𝐶,𝑐, 

that has the same feature values as 𝒙𝑁,𝑐  (i.e., 𝒙𝐶,𝑐 = 𝒙𝑁,𝑐), ow-

ing to the context dependency of the BLSTM model, we might 

observe 𝑞𝐶,𝑐 ≠ 𝑞𝑁,𝑐  (more specifically, 𝑞𝑁,𝑐 < 𝑞𝐶,𝑐  if Quality-
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Net is properly trained). It is noteworthy that the estimated 

frame-wise quality is not actually “frame-wise,” where the dis-

tant context information always influences the score. The most 

straightforward method to directly control the flow of context 

information in BLSTM is through the forget gate and recurrent 

weight matrix. As recommended by Jozefowicz et al. [27], to 

learn more long-range dependencies, the forget gate bias (Fgb) 

should be initialized to a larger value. Since we intend to limit 

the degree of context information to be used in our application, 

the Fgb is initialized to a smaller value, making Quality-Net 

prone to forget and focus more on the current frame. 

3. Experiments 

3.1. Experimental setup 

In our experiments, the TIMIT corpus [28] was used to pre-

pare the training and test sets. All 4620 utterances from the 

training set of the TIMIT database were used for training 

Quality-Net. These utterances were further divided into three 

subsets, namely clean, noisy, and enhanced sets to learn the 

assessment mapping function of different speech conditions.  

For the clean set, 250 utterances were randomly selected to 

keep their original clean condition. The remaining utterances 

were further divided into two parts to form noisy and en-

hanced sets. The speech utterances in the noisy set were ob-

tained by corrupting the original speech utterances with 90 

noise types, at eight SNR levels (from -10 dB to 25 dB with 

steps of 5 dB). For more challenging experimental conditions, 

each utterance was only corrupted with one noise type at one 

SNR level such that all the training data were unparalleled. 

The speech utterances in the enhanced set were corrupted with 

the same 90 noise types as those used in the noisy speech set, 

while a BLSTM-based speech enhancement model [29, 30] 

was applied on these utterances. The speech enhancement 

model was trained using 200 utterances (randomly selected 

from the test set of the TIMIT database) corrupted with 10 

noise types, at four SNR levels (-8 dB, -4 dB, 4 dB, and 8 dB). 

Thus, a total of 8000 utterances were used to train the speech 

enhancement model. Note that the noise types used for train-

ing Quality-Net and the speech enhancement model were not 

overlapped, despite them coming from [31].  

Another 100 utterances were randomly selected from the 

test set of the TIMIT database for evaluating the performance 

of Quality-Net on clean, noisy, and enhanced speech. For the 

clean test set, we used the original clean speech utterances; for 

the noisy test set, the 100 utterances were corrupted with four 

unseen noise types (engine, white, street, and baby cry), at six 

SNR levels (-6 dB, 0 dB, 6 dB, 12 dB, 18 dB, and 24 dB); for 

the enhanced set, the utterances in the noisy set were enhanced 

by the enhancement model above. In summary, there are total 

of 4900 utterances in the test set.  

Quality-Net has one bidirectional LSTM layer with 100 

nodes, followed by two fully connected layers, each with 50 

exponential linear unit (ELU) [32] nodes and one linear node 

(for frame-level quality assessment). The last layer is the 

global average layer for obtaining the utterance-level quality 

score Q. The parameters are trained with RMSprop [33], 

which is a suitable optimizer for RNNs.  

The quality label in the experiments was based on PESQ, 

and the findings can be treated as a pilot study for the future 

work on the assessment of MOS. Note that since Quality-Net 

is not based on the formulation of PESQ, its structure can also 

be applied to predict MOS. 

 

(a) 
 

(b) 

Figure 2: Example of (a) clean speech, and (b) its correspond-

ing frame-level quality assessment by Quality-Net, with and 

without frame constraint during training. 

Table 1: Effects of frame-level quality constraint.  

  

MSE 

 

LCC 

 

SRCC 

Variance of 

frame quality in 

clean speech 

without 

constraint 

0.1441 0.8559 0.8607 4.1128 

with  

constraint 
0.1266 0.8749 0.8807 0.2468 

 

To evaluate the performance of Quality-Net, the mean 

square error (MSE), linear correlation coefficient (LCC), and 

Spearman’s rank correlation coefficient (SRCC) were com-

puted between the predicted and true PESQ scores. In the fol-

lowing, we first show the effects of the conditional constraint 

and limited context influence introduced in section 2. 

3.2. Effects of frame-level quality constraint 

We first show the effects of applying the frame quality con-

straint in Quality-Net training. The results of “without con-

straint” and “with constraint” are shown in Table 1. Note that 

for a model without frame constraint, it does not consider the 

inferred results of frame quality, and its objective function is 

(1) with 𝛼(�̂�𝑠) = 0 . The results in Table 1 show that the 

frame constraint can effectively reduce the variance of frame 

quality assessment in clean speech (average over the clean ut-

terances in the test set). In addition, since this constraint can 

explicitly guide Quality-Net to differentiate clean frames from 

degraded frames, the overall performance is also significantly 

improved. Fig. 2 shows an example of a clean speech utter-

ance and its corresponding frame-level quality assessment by 

Quality-Net. From the figure, it is clear that application the 

frame-level quality constraint results in a smaller variance in 

the predicted frame scores.  

3.3. Effects of initialization on forget gate bias 

Next, we investigate the effects of initializing the forget gate 

bias in Quality-Net. The results of using different Fgb values 

are listed in Table 2. As shown, we can first observe that the 

initialization of Fgb does not significantly impact the utter-

ance-level assessment. For further investigation on the frame-

level assessment, Fig. 3 presents an example of a clean speech, 

a partial noisy (the 40th–100th frames, marked in black-

dashed rectangle in Fig. 3(b)) utterance, and the corresponding 

assessment results by Quality-Net with different initial values 

of Fgb (Fgb= 1 and Fgb= -3). As shown in Fig. 3 (c) and (d), 

although both models can successfully detect the noisy region 

Frame index
20 40 60 80 100 120 140

50

100

150

200

250

20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

Frame index

E
s
ti
m

a
te

d
 f
ra

m
e
 q

u
a
li
ty

 

 

Without frame constraint, estimated Q=3.903

With frame constraint,      estimated Q=3.989

1875



 

 

Table 2: Effects of initialization on forget gate bias. 

Initialization of Fgb MSE LCC SRCC 

Fgb= 1 [27] 0.1273 0.8737 0.8721 

Fgb= -1 0.1366 0.8667 0.8731 

Fgb= -3 0.1266 0.8749 0.8807 

Fgb= -5 0.1328 0.8637 0.8668 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 3: Example of (a) clean speech, (b) partial noisy (street 

noise, the 40th–100th frames) speech, (c) assessment results 

by Quality-Net with the forget gate bias initialized as 1, and (d) 

assessment results by Quality-Net with the forget gate bias ini-

tialized as -3. 

 

and yield low quality scores in the 40th–100th frames, the 

scores in the clean region (the 1st–39th and 101th–140th 

frames) are also decreased in Fig. 3 (c). This is because Fgb is 

initialized to a large value such that Quality-Net fails to forget 

the distant context information. Consequently, the noise in the 

noisy region affects the assessment of distant clean frames. 

This somewhat violates the desired property of frame assess-

ment. Based on the findings in Table 2, we use the optimal 

setup (Fgb is initialized as -3) in the following experiments. 

3.4. Detailed assessment results 

In this section, we show the detailed assessment results of 

Quality-Net for noisy, clean, and enhanced speech in the test 

set. Fig. 4(a) presents the scatter plots with the corresponding 

metrics for clean (the points in the upper right part) and noisy  

speech utterances. The assessment results for enhanced speech 

utterances are shown in Fig. 4(b). From these two figures, we 

observed that the enhanced utterances are more difficult to 

evaluate than the noisy and clean ones, especially for the low 

PESQ cases (the correlation coefficient of Fig. 4(b) is lower 

than that of Fig. 4(a)). Next, we compare Quality-Net with an 

existing two-stage model, which uses an autoencoder for fea-

ture extraction and neural network for assessment [22]. The 

results of the two-stage approach and Quality-Net are listed in 

Table 3. As shown, Quality-Net outperforms the two-stage 

model, possibly because Quality-Net jointly optimizes the fea-

ture extraction and assessment model. 

 

(a)                                              (b) 

Figure 4: Scatter plots for speech quality assessment by Quali-

ty-Net. (a) noisy and clean speech; (b) enhanced speech. 

 

Table 3: Results of Quality-Net and the two-stage model. 

 MSE LCC SRCC 

Autoencoder +NN [22] 0.1529 0.8434 0.8675 

Quality-Net 0.1266 0.8749 0.8807 

 

 

Figure 5: Relation between the number of training utterances 

and the assessment results. 

3.5. Relation between number of training utterances and 

assessment performance 

Although this paper focuses on predicting the PESQ scores of 

speech utterances, it also provides guidelines for the corpus 

collection, which is one of our future works. Collection of a 

large number of speech utterances and the corresponding 

MOS labels is laborious and time consuming. Therefore, we 

also investigated the relation between the number of training 

utterances and the assessment results. From Fig. 5, we ob-

served that 1000 utterances are sufficient (the performance 

starts to saturate) for training Quality-Net to achieve an accu-

rate quality prediction. Unexpectedly, the correlation coeffi-

cient of 0.7 is achieved by only 100 training utterances.  

4. Conclusions 

This paper proposed a novel, non-intrusive, and end-to-end 

speech quality evaluation model: Quality-Net. Our experi-

mental results show that Quality-Net can yield a high correla-

tion to PESQ. The non-intrusive property and frame-level 

quality assessment of Quality-Net considerably increases its 

practicality in different applications. The end-to-end frame-

work further allows Quality-Net to be directly combined with 

a speech enhancement model (e.g., as a perceptual loss). Our 

future work includes applying Quality-Net for the assessment 

of MOS and employing it for speech enhancement. Through 

Quality-Net, we anticipate that the mismatch between the ob-

jective used in training a speech enhancement model and the 

human perception can be effectively reduced. 
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