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Abstract
Unsupervised discovery of acoustic tokens from audio corpora
without annotation and learning vector representations for these
tokens have been widely studied. Although these techniques have
been shown successful in some applications such as query-by-
example Spoken Term Detection (STD), the lack of mapping rela-
tionships between these discovered tokens and real phonemes have
limited the down-stream applications. This paper represents prob-
ably the first attempt towards the goal of completely unsupervised
phoneme recognition, or mapping audio signals to phoneme se-
quences without phoneme-labeled audio data. The basic idea is to
cluster the embedded acoustic tokens and learn the mapping be-
tween the cluster sequences and the unknown phoneme sequences
with a Generative Adversarial Network (GAN). An unsupervised
phoneme recognition accuracy of 36% was achieved in the prelim-
inary experiments.
Index Terms: Phoneme Recognition, Unsupervised Learning,
Generative Adversarial Network

1. Introduction
With the rapid development of deep learning, remarkable achieve-
ments in supervised speech recognition has been obtained [1, 2],
but primarily relying on massive annotated data for model train-
ing, which is costly and labor requiring. In contrast, in the era of
big data, huge quantities of audio corpora are available almost ev-
erywhere, but there is almost no way to annotate them or use them
in the supervised paradigm. This is why unsupervised approaches
of speech processing, including automatically discovering acoustic
tokens and learning representations and linguistic structures from
unlabeled audio corpora is attractive, desirable and critical [3].

In unsupervised discovery of acoustic tokens, the typical ap-
proach is to segment acoustically similar audio signal patterns
followed by clustering the obtained repeated patterns in the cor-
pora [4, 5, 6, 7]. These approaches were proved very useful in
tasks such as query-by-example spoken term detection (STD) [8,
9, 10, 11].

On the other hand, in representation learning, efforts were
made in trying to encode variable-length audio segments into vec-
tors with fixed dimensionality [12]. These vector representations
have been shown useful for many applications, such as speaker
identification [13] and audio emotion classification [14], in addi-
tion to spoken term detection (STD) [15, 16, 17], because such
vector representations can be applied to standard classifiers to de-
termine the speaker, the emotion label, or whether the input query
is included. For spoken document retrieval, by representing audio
segments as vectors, search can be much more efficient compared
to template matching over audio frames [12, 18, 19]. Deep learn-
ing approaches have been popularly used for such purposes, with
LSTM-based sequence-to-sequence auto-encoder being a good ex-
ample [20, 21]. By minimizing the reconstruction error for the in-
put audio sequences, the embeddings for the audio segments can

be extracted from the bottleneck layer of the model. It has been
shown that vectors obtained in this way carry the information of
phonetic structures for the audio segments [22, 23].

All the above approaches were not able to learn the mapping
relationships between the human-defined phonemes and the auto-
matically discovered acoustic tokens. The lack of this mapping
relationships have seriously limited the applications obviously be-
cause the semantics and core information of the speech signal are
carried by the phonemes. Although such automatically discov-
ered acoustic tokens have been successfully transcribed into text
with the help of some extra annotations [24], to our knowledge, no
work has been reported to try to transcribe the discovered acoustic
tokens directly into phonemes in an completely unsupervised way.
Motivated by the very impressive work of neural machine transla-
tion (NMT) without parallel data [25, 26], with the concept of gen-
erative adversarial network (GANs) [27], mapping from these au-
tomatically discovered acoustic tokens into phonemes seems pos-
sible because it is also a kind of translation except on the acoustic
level.

In this paper, we propose a completely unsupervised phoneme
recognition framework, in which only unparalleled or unrelated
speech utterances and text sentences are needed in model train-
ing. The audio signals are automatically segmented into acoustic
tokens and encoded into representative vectors. These representa-
tive vectors are then clustered, and each speech utterance is repre-
sented as a cluster index sequence. A mapping relationship GAN
is then developed, in which a generator transforms each cluster
index sequence into a predicted phoneme sequence, and a discrim-
inator is trained to distinguish the predicted phoneme sequence
from the real phoneme sequences collected from text sentences.
A phoneme recognition accuracy of 36% was achieved on TIMIT
testing set for a model trained with TIMIT audio training set and
unrelated text corpus.

2. Unsupervised phoneme recognition
framework

Figure 1 depicts the proposed framework including three parts:
Audio2Vec, K-means clustering, and matching relationship GAN.
Audio2Vec transforms each audio utterance into a sequence of au-
dio embeddings. Any unsupervised acoustic token discovery ap-
proach can be used here, not limited to the ones mentioned below.
All the audio embeddings are then K-means clustered and each as-
signed a cluster index. The mapping relationship GAN then learns
to transform the cluster indices into phonemes without supervi-
sion.

2.1. Audio2Vec

Each utterance X is first divided into a sequence of automatically
discovered acoustic tokens X = (X1, X2, ..., XM ) in an unsu-
pervised way, where M is the number of tokens in the utterance.

Interspeech 2018
2-6 September 2018, Hyderabad

3748 10.21437/Interspeech.2018-1800

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1800.html


Figure 1: The proposed framework consists of three parts: Audio2Vec (yellow) divides the audio utterances into segments and obtains the
audio embeddings for the segments; all audio embeddings are then clustered by K-means (blue) and assigned cluster indices; in mapping
relationship GAN (green), the generator produces predicted phoneme vector sequences from cluster index sequences, and the discriminator
is trained to distinguish the predicted and the real phoneme vector sequences collected from text sentences and the lexicon.

Each acoustic token Xi is then transformed into an audio embed-
ding zi ∈ Rd, where d is the dimensionality of the encoding space.
So with Audio2Vec we encode the origin utterance into a vector se-
quence Z = (z1, z2, ..., zM ), where zi ∈ Rd is the audio embed-
ding of the i th token Xi. Many available approaches can be used
here for this purpose, but below we assume the recently devel-
oped Segmental Audio Word2Vec is used [28]. In this approach,
automatic segmentation of utterances into acoustic tokens and au-
dio embedding of the acoustic tokens into vector representations
can be jointly learned in a Segmental Sequence-to-sequence Auto-
encoder (SSAE). In SSAE, a segmentation gate is inserted into the
previously developed Sequence-to-sequence Auto-encoder (SAE).
The latter maps a variable-length audio segment into a fixed-length
vector z ∈ Rd [23].

SSAE mentioned above consists of an RNN encoder and an
RNN decoder. The RNN encoder reads the input sequence sequen-
tially frame-by-frame and the hidden state of the RNN is updated
accordingly. At the last frame of each acoustic token, the hidden
state is taken as the audio embedding of the token and the hidden
state is reset for the next token. In addition to learning to seg-
ment the tokens in an utterance, the RNN encoder and decoder are
trained by minimizing the mean squared reconstruction loss. The
whole training process requires no labeled data, but the audio em-
beddings are good representations for the tokens because based on
them, the tokens can be reconstructed.

2.2. K-means clustering

In this stage, we collect all audio embeddings z ∈ Rd gener-
ated from all training audio data, and perform K-means to cluster
them into K clusters. The choice of the parameter K will be dis-
cussed later on when discussing the experiments. We further map
the audio embedding sequence Z = (z1, z2, ..., zM ) for each ut-
terance to a cluster index sequence C = (c1, c2, ..., cM ), where
ci = k ∈ [1,K] denotes the index for the cluster zi belongs to.
This clustering process reduces the difficult mapping between a
high dimensional continuous embedding space and the phonemes
to a simpler mapping between cluster indices and phonemes.

Figure 2: The generator in the mapping relationship GAN consists
of a K × L matrix E, which is a lookup table, where K is the
number of clusters and L the number of phonemes. Given a cluster
index ci = k ∈ [1,K], we pick up the corresponding column ek
in E by table lookup, and perform softmax or gumbel-softmax to
obtain the predicted phoneme vector.

2.3. Mapping relationship GAN

Generative Adversarial Networks (GANs) [27, 29, 30] is used in
this stage. To learn the mapping relationship, we need a collection
of text sentences, which does not have to be related to the audio.
Each of these text sentence is transformed into phoneme sequence
based on a lexicon. Each phoneme is represented as a one-hot
encoding vector p. Hence a phoneme sequence for a sentence is
represented as a vector sequence P = (p1, p2, ..., pN ), where N
is the number of phonemes in the sentence. P is referred to as ’real
phoneme vector sequence’ below.

The mapping relationship GAN consists of a generator and
a discriminator. The generator G is an K × L matrix E =
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{e1, e2, ..., eK}, where L is the number of phonemes,K the num-
ber of clusters, as in Figure 2. The i th column of E, ei ∈ RL,
is intended to approximate the log probability of the i th cluster of
tokens over the L phonemes, so E is in fact a lookup table. Given
a cluster index c = k ∈ [1,K], the generator simply picks up
the corresponding column of E, ek, and performs a softmax func-
tion to produce a L-dimensional phoneme distribution p̂. In this
way, for each cluster index sequence C for an utterance, we can
generate a sequence of vectors P̂ = G(C) = (p̂1, p̂2, ..., p̂M ),
each vector p̂i for a token Xi, referred to here as ’predicted
phoneme vector sequence’. The discriminator D takes this pre-
dicted phoneme vector sequence P̂ and outputs a scalar. The
higher the scalar, the more possible it is a real phoneme vector
sequence.

The discriminator is trained to distinguish between the pre-
dicted phoneme vector sequences P̂ and the real phoneme vector
sequences P , while the generator is trained to cheat the discrimi-
nator. The discriminator is trained by minimizing the loss below
following the concept of WGAN [29],

LD = −(EP∼Pr [D(P )]− EP̂=G(C),C∼PC [D(P̂ )]), (1)

where Pr is the distribution of the real phoneme vector sequences
from text, PC the distribution of the cluster index sequences from
audio data, and P̂ the output of generator, P̂ = G(C). Gradient
penalty[31] was applied to penalize functions having high gradient
norm or changing too rapidly. The generator loss is:

LG = −EP̂=G(C),C∼PC [D(P̂ )]. (2)

The generator and the discriminator are learned iteratively. At the
end, the generator is supposed to map any cluster index sequence
to a phoneme vector sequence which ’looks like’ a real one. Dur-
ing testing, given an utterance, the cluster index sequence is gen-
erated and transformed into a phoneme vector sequence, and the
phoneme with the highest score in each phoneme vector is taken
as the phoneme recognition result.

In the generator, given a cluster index c, the predicted
phoneme vector was obtained via softmax while the real phoneme
vector is one-hot. An alternative way may be sampling from the
phoneme distribution, but the sampling process is not differen-
tiable. Therefore, we also try to use gumbel-softmax with straight-
through estimator when training the generator [32, 33].

3. Experimental setup
3.1. Audio data

The audio data were from TIMIT acoustic-phonetic corpus [34]
including broadband recordings of phonetically-balanced read
speech, with 6300 utterances from 630 speakers. The train/test sets
were split with 462/168 non-overlapping speakers in each set re-
spectively. Each utterance came with manually time-aligned pho-
netic and word transcriptions, as well as a 16-bit, 16kHz speech
waveform file. The 39-dim MFCCs were extracted with utterance-
wise cepstral mean and variance normalization (CMVN) applied.
To slightly simplify our work, the start silence and end silence
were removed from each utterance according to oracle phoneme
boundaries.

3.2. Lexicon and text data

We built a lexicon containing all the words in the text of TIMIT
training data. The text sentences were from the English mono-
lingual data of WMT’16 [35], which was extracted from various

online news published in 2015, containing roughly 27 millions of
sentences. We only used thirty thousands sentences for which all
words are in the above lexicon for training.

3.3. Experimental setting

All models were trained with stochastic gradient descent using a
mini-batch size of 128, and Adam optimization technique with
β1 = 0.9, β2 = 0.999 and ε = 10−8. For Sequence-to-sequence
Auto-Encoder, one-layer LSTM with 512 hidden units was used
for both encoder and decoder. Training was set to 300 epoch with
learning rate 5 × 10−4. The cluster number for K-means ranged
from 50 to 1000 and will be discussed below. The discriminator
was a two-layer 1D CNN. The first layer concatenated 4 differ-
ent kernel size: 3,5,7 and 9, each with 256 channels. The second
layer was a convolution layer with kernel size 3 and 1024 chan-
nels. We used Leaky relu as the activation function. The learning
rate of generator and discriminator were set to 0.01 and 0.001 re-
spectively. Every training iteration consisted of 3 discriminator
updates and a single generator update. The Gradient penalty ratio
of the discriminator was set to 10 [29]. In gumbel-softmax, the
inverse temperature was set to 0.9 without annealing [36].

In the preliminary experiments, we didn’t use SSAE men-
tioned above, but took the oracle phoneme boundaries provided
in TIMIT for limit of time. This is the only annotaion we used.
The rest of the process were competely unsupervised. Automati-
cally segmenting the utterances will be our future work. This gave
about 160 thousands and 60 thousands segments in training/testing
sets respectively. We trained all the models on the training set, and
tested on both training and testing sets. The evaluation metrics is
phoneme accurary.

4. Experimental results
4.1. Analysis on number of clusters

We first varied the cluster number K to be 50, 100, 200, 300, 500,
800 and 1000. The results in Figure 3 (A) are those for the refer-
ence phoneme sequences from TIMIT training set taken as the real
phoneme sequences. So the text sentences are the transcriptions of
the audio utterances (or extremely matched), not aligned though.
In Figure 3 (B), the phoneme sequences generated from WMT’16
were used as real phoneme sequences, or unrelated to the audio
utterances. We obtained the correct phoneme of each segmented
token based on the reference transcriptions, from which we de-
fined the majority phoneme of each cluster. The green curves in
both Figure 3 (A) and (B) are the cluster purity, which is the per-
centage of the majority phonemes in all clusters. This is the upper
bound of the phoneme accuracy, if all segments in a cluster were
mapped to its majority phoneme. Results for both softmax and
gumbel softmax are shown for both training and testing sets.

In Figure 3 (A), the performance increased with the cluster
number. The best performance (52.49%) was achieved for 1000
clusters, very close to the upper bound or cluster purity of 59.02%.
Because the two domains were extremely matched, the mapping
relationship GAN could identify the mapping relationship easily,
so the performance was primarily determined by the cluster purity,
which increased with the cluster number. In Figure 3 (B), there
was a much wider gap between the accuracy and the upper bound.
For 500 or more clusters (roughly 10 or more clusters for each
phoneme in average), the mapping relationship became difficult to
learn even though the cluster purity was higher for more clusters.
The best performance happened around 300 clusters.

For all cases in Figure 3 (A) and (B), gumbel-softmax out-
performed softmax. The real phoneme sequences are all one-hot,
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Figure 3: Phoneme accuracy for different numbers of clusters. Cluster purity (green curves) are the upper bounds.

Table 1: Comparison of different methods on training and testing
data.

Methods Accuracy
Train Test

(a) Random 2.56 2.56
(b) Most Frequent Phoneme 5.12 4.83

proposed

Matched (c) Softmax 48.58 48.23
(Figure 3 (A)) (d) Gumbel 50.84 50.33

Unrelated (e) Softmax 25.78 25.68
(Figure 3 (B)) (f) Gumbel 34.66 34.12

Unrelated (g) Softmax 31.35 31.21
(emsemble) (h) Gumbel 36.27 36.05

but when using softmax, the generator naturally tried to make the
predicted phoneme vectors close to one-hot to cheat the discrim-
inator. But this is weird because a cluster mapped to a specific
phoneme only when the cluster purity is 100%. In contrast, with
gumbel-softmax, the predicted phoneme vector was to be trans-
formed towards one-hot. So the generator did not need to make
the distribution very sharp, thus could concentrate more on mak-
ing the predicted phoneme vector close to the real distributions.
Gumbel-softmax also made the training about 5 times faster.

4.2. Unsupervised phoneme recognition accuracy

The unsupervised phoneme recognition accuracy for 300 clus-
ters in Figure 3 is listed in Table 1. Random baseline (row(a))
guessed uniformly from the 39 phoneme, while the most frequent
phoneme baseline (row (b)) simply guessed the most frequent
phoneme,/ix/,for all segments. Rows (c) to (f) are the results for the
proposed approach for extremely matched data(Figure 3 (A)) and
unrelated data(Figure 3 (B)) using softmax and gumbel-softmax It
is clear that even with unrelated text the proposed approach sig-
nificantly outperformed the trivial baselines (rows (e), (f) v.s. (a),
(b)). For unrelated data, we also integrated the output of 6 models
with slightly different parameters in the generator and discrimina-
tor by majority vote for both softmax and gumbel-softmax (rows
(g), (h)). Obviously this improved the performance (rows (g) v.s.
(e), (h) v.s. (f)), giving an accuracy exceeding 36%. In all cases
the training and testing results were very close. For unsupervised
learning of phoneme characteristics, whether the model has seen
the data is not important.

Figure 4: Comparison of unsupervised learning with unrelated text
and supervised learning with different amounts of training data.

4.3. Comparison with supervised approaches

Here we wish to find out the accuracy we achieved can be obtained
with how much of labeled data in supervised apprroach. We used
the labeled TIMIT training data to train a recurrent model to map
each segment to its phoneme. We used a one-layer LSTM net-
work with 512 hidden units with relu, cross-entropy as loss func-
tion. The results are in Figure 4, where the horizontal axis is the
labeled data ratio, where 1.0 at the right end means we used ex-
actly the same training data except all of them were labeled, and
0.01 means we only used 1% of the data. Serious over-fitting oc-
cured at around 0.0007 of the ratio for the supervise model. We
see the proposed unsupervised model with ensemble (the red line)
exceeded the supervised model using 0.001 (0.1%) of the training
data but labeled. There is still a long way to go.

5. Conclusions and future works
In this work we proposed a framework to achieve compelety unsu-
pervised phoneme recognition without parallel data. We demon-
strate that the proposed unsupervised framework can achieve
roughly comparable performance on supervised learning with
0.1% of training data. There is still a long way to go along this
direction, but here we show it is feasible to recognize phonemes
without any labeled data.1

1Thanks for the sponsorship of Ministry of Science and Technology of
Taiwan.
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