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Abstract
Recurrent neural network (RNN)-based acoustic models are
widely used in speech recognition, and end-to-end training with
CTC (connectionist temporal classification) shows good perfor-
mance. In order to improve the ability to keep temporarily dis-
tant information, we employ hierarchical recurrent neural net-
works (HRNNs) to the acoustic modeling in speech recogni-
tion. HRNN consists of multiple RNN layers that operate on
different time-scales, and the frequency of operation at each
layer is controlled by learned gates from training data. We em-
ploy gate activation regularization techniques to control the op-
eration of the hierarchical layers. When tested with the WSJ
eval92, our best model obtained the word error rate of 5.19%
with beam search decoding using RNN based character-level
language models. Compared to an LSTM based acoustic model
with a similar parameter size, we achieved a relative word error
rate improvement of 10.5%. Even though this model employs
uni-directional RNN models, it showed the performance im-
provements over the previous bi-directional RNN based acous-
tic models.
Index Terms: speech recognition, recurrent neural network,
acoustic modeling

1. Introduction
Recurrent neural network (RNN) based acoustic models are
widely used in speech recognition systems, and they show very
good performance especially in end-to-end models [1, 2, 3, 4,
5]. Connectionist temporal classification (CTC) [6] is a most
widely used method to train the RNN for acoustic modeling,
which generates text sequences directly from the input speech.
More recently, other types of end-to-end structures are attract-
ing attention, such as the encoder-decoder [7, 8] and RNN-
transducer [9, 10].

For acoustic modeling, RNN runs typically with a 10 ms
frame rate, which means that RNN acoustic models need to
compute a lot of time steps compared to other tasks, such as
language modeling. Learning long-term dependency in acous-
tic modeling can be more difficult because vanishing gradient
problem is very severe when RNN is unrolled in many time
steps [11]. Even if a gated structure like long-short term mem-
ory (LSTM) [12] is used, it is not easy to propagate information
over 100 time steps, which corresponds to 1 second of input
speech if 10 ms frame is employed.

There have been many studies to enable RNNs to maintain
long-term context in their states. One of the approaches is em-
ploying hierarchical recurrent neural networks (HRNN). HRNN
consists of multiple modules with different levels of abstraction.
The module with higher-level abstraction focuses on the long-
term context of the input by skipping update of the states for
several time steps. It can improve the recognition performance
because skipping state updates in RNN alleviates the vanishing

gradient problem and the information can be propagated to the
future states more easily.

The structure of HRNN has been studied actively in recent
researches [13, 14, 15]. Clockwork RNN [13] has a fixed-rate
operation frequency for each module. HRNN proposed in [14]
use explicit boundary information such as word-boundary or
end-of-sentence in the language model task. Hierarchical mul-
tiscale RNN (HM-RNN) [15] use the gates to control the oper-
ations of the modules, where the gates are trained from the data
without explicit information. These HRNNs show a promising
performance on sequential tasks such as language modeling and
handwriting sequence generation while reducing the number of
computations.

In this paper, we apply an HRNN model to acoustic mod-
eling task by employing a trained hierarchical structure [15].
Learning the hierarchical structure from data is especially ef-
fective for acoustic modeling because it is not easy to obtain
explicit boundary information from acoustic data in inference
time. We expect high-level layers learn long-term relationships
such as the correlation between phonemes or graphemes.

We trained HRNNs with CTC loss [6], which is a widely
used training method in acoustic modeling. We compare the
performance of HRNNs with various types of gates. We also
introduce a regularization term to encourage the gate to learn
meaningful boundary for speech recognition and lower the com-
putational complexity. We expect that HRNN architecture can
be applied to other types of end-to-end RNN speech recognition
models, such as the encoder-decoder model.

This paper is organized as follows. We review the hierarchi-
cal recurrent neural networks in Section 2. Section 3 describes
the HRNN architectures for acoustic modeling. The word and
character error rates of HRNN are evaluated and analyzed in
Section 4. Concluding remarks are presented in Section 5.

2. Hierarchical Recurrent Neural Networks
Many RNN models including LSTM [12] or gated recurrent
unit (GRU) [16] can be extended to HRNN architecture. Gen-
eral recurrent layers can be expressed with the function f and h
as follows:

st = f(xt, st−1),

yt = h(st),
(1)

where xt, yt, st are the input, output, and state of RNN at the
time step t. The above recurrent layer can be converted to gated
recurrent layer with the gate gt ∈ {0, 1},

st = gtf(xt, st−1) + (1− gt)st−1,

yt = h(st).
(2)

When gt = 1, this is identical to the original recurrent layer.
When gt = 0, the state and the output of the recurrent layer
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keep the same values of the previous time step (st = st−1, yt =
yt−1).

There are several methods to compute the gate value gt.
One approach is to use a periodical gate with a constant period
T as [13]:

gt =

{
1 if t mod T = 0,

0 otherwise
(3)

This approach can be beneficial for implementation because it
has a regular computational pattern, while it is not suitable for
variable length modeling, such as speech recognition. Another
approach is rule-based gating, where gt is 1 only if the input
satisfies the certain condition. This is an efficient method for
character-level language modeling because the word boundary
information can be easily obtained from the input feature.

The approach considered most promising is using trained
parameters to generate gt from the input xt and the state st−1

[15]:

gt = round(σ(Wxt +Ust−1 + b)), (4)

with the weight matrices W, U, bias b, and activation function
σ : R 7→ [0, 1]. The sigmoid function is typically used for
the activation function σ. For the rounding function, stochas-
tic rounding with Bernoulli sampling is used in training, while
deterministic rounding with a threshold of 0.5 is used for in-
ference. When this gate function is used, the loss is not dif-
ferentiable due to the discontinuity of the rounding function.
Straight-through estimator [17] can be used to train this model
by approximating the round function to the identity function in
the backward path:

∂round(x)

∂x
= 1. (5)

This is a biased estimator with low variance. The slope anneal-
ing trick [15] can be used to reduce the bias of the straight-
through estimator.

There can be also a number of ways to connect layers with
different scales in HRNN. The hidden states within a layer can
be divided into different time scales [13]. Otherwise, each layer
in the RNN can be assigned to a different scale. In this case, the
output of each layer can be summed or concatenated and passed
to the following layer to consider both short-term and long-term
information. In this paper, HRNN represents an RNN with one
or more gated recurrent layers.

3. Acoustic Modeling with HRNN
3.1. Additional loss for gate training

When we trained HRNN with CTC loss from scratch, we found
that the gate was often converged to an output value of 1. This
is not the desired behavior because we want to capture the long-
term information by skipping state updates. Thus, we use reg-
ularization term to control the gate value. One approach is to
use L2 or L1 regularization on the gate to encourage fewer state
updates [18]:

Ltrain = LCTC + λ
∑
||gt||2, (6)

where λ is a hyperparameter and LCTC is CTC loss. However,
it was not easy to determine the value of λ in our preliminary
experiments because a large λ makes the gate always have a
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Figure 1: Hierarchical RNN structure for acoustic modeling.

value of zero. Instead, we add the L2 loss between the gate
gt and the phoneme boundary label lt ∈ {0, 1} to the original
CTC loss LCTC :

Ltrain = LCTC + λ
∑
||gt − lt||2. (7)

This is partly inspired by the research in computer vision
area [19], which shows recognition performance improvement
when the model is trained using multi-task loss with the ob-
ject boundary information. Unfortunately, most speech datasets
do not have the frame-wise phoneme annotation. We gener-
ate phoneme boundary labels from training data using Montreal
Forced Alignment tool with the pretrained GMM/HMM acous-
tic model [20].

In order to enable HRNN to learn more flexible hierarchical
structure besides the phoneme, we used the loss in Eq. 7 for the
initial 10 epochs. Only CTC loss is used after then. By adopting
this method, the gate was trained stably. We used the value of
0.01 for λ in our experiments.

3.2. HRNN architecture for acoustic modeling

We used CNN-HRNN models described in Figure 1. We used
three layers of 512-dimensional LSTM for HRNN. LSTM can
be easily replaced with other types of RNN models. The first
LSTM layer is computed every time step as described in Eq.
(1). The second LSTM layer is a gated LSTM that updates the
states only if gt = 1. The second layer is expected to learn
the long-term context in this model. The output of the first and
the second layers are concatenated and used as the input of the
third LSTM layer. By concatenating two layers, both long-term
and short-term contexts can be considered simultaneously. The
output of the third layer is connected to the softmax layer.

We have trained the following models to compare and ana-
lyze HRNN structures:

• LSTM: three LSTM layers are stacked as the conven-
tional RNN model.

• LSTM-skip: there is a skip connection between the first
and the third layers. This is to keep the same topology as
HRNN.

• HRNN with periodic gate: gt is computed as in Eq. (3).
T = 4 is used.
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Figure 2: The structure of the RNN models trained for comparison: (a) baseline LSTM, (b) LSTM-skip, (c) HRNN. In (c), gt can be
computed using Eq. (3) or Eq. (4).

• HRNN with trained gate: gt is computed as in Eq. (4).
No additional gate loss is used.

• HRNN with λ = 0.01: gt is computed as in Eq. (4).
Additional gate loss in Eq. (7) is used with λ of 0.01
during the entire training process.

• HRNN with λ scheduling: gt is computed as in Eq. (4).
Additional gate loss in Eq. (7) is used with phoneme
boundary information during the initial 10 epochs.

The baseline LSTM model has the fewest parameters be-
cause the concatenated input of the third LSTM layer increases
the number of parameters in other models. Other models have
almost the same number of parameters, with negligible differ-
ence because of the parameters for the gate. Figure 2 describes
the structure of these models.

4. Experimental Results
4.1. Experimental setup

We used the WSJ SI-ALL training set, which includes all
the speaker-independent training utterances in the WSJ cor-
pus. This corresponds to 167 hours of speech data. A 40-
dimensional log mel frequency filterbank feature is extracted
from raw speech data. The feature vectors are extracted every
10 ms with 25 ms Hamming window. Two convolutional lay-
ers are used on the input side of the HRNN. The input of the
convolution layer is two-dimensional feature maps with time
and frequency axes. Three feature maps are generated by using
the filterbank with its delta and double-delta. Each convolu-
tional layer has a filter size of 3, and generates 32 output fea-
ture maps. The first convolutional layer down-samples the input
frames with the stride of 2. Because of the down-sampling, the
input feature of HRNN corresponds to 20 ms of speech data.

We applied batch normalization [21] to every output of con-
volutional layers, and variational dropout [22] to every LSTM
layer for regularization. Adam optimizer [23] is used for train-
ing. We used initial learning rate of 3e-4, and the learning rate
is reduced to half if the validation error is not lowered for con-
secutive 8 epochs. Gradient clipping with 4.0 is applied. When
the gate is trained, linear slope annealing from 1 to 5 is applied
for initial 40 epochs. Hyperparameters are kept the same for all
the models.

Table 1: WER and CER on WSJ eval92 test set with greedy
decoding.

Model CER WER

LSTM 5.93% 20.16%
LSTM-skip 6.79% 23.32%
HRNN with periodic gate 7.83% 27.66%
HRNN with trained gate 6.01% 20.50%
HRNN with λ = 0.01 6.92% 23.39%
HRNN with λ scheduling 6.09% 21.74%

Table 2: WER and CER on WSJ eval92 test set when decoding
is conducted with trigram word LM.

Beam size Model CER WER

128 LSTM 4.98% 13.69%
LSTM-skip 5.82% 15.91%
HRNN with periodic gate 6.38% 17.52%
HRNN with trained gate 4.34% 11.95%
HRNN with λ = 0.01 4.99% 13.55%
HRNN with λ scheduling 4.30% 11.93%

512 LSTM 4.79% 12.85%
LSTM-skip 5.38% 14.47%
HRNN with periodic gate 5.89% 15.88%
HRNN with trained gate 4.15% 11.16%
HRNN with λ = 0.01 4.75% 12.55%
HRNN with λ scheduling 3.96% 10.69%

4.2. Results on WSJ eval92

We reported the character error rate (CER) and word error rate
(WER) with three different decoding algorithms: greedy de-
coding, beam search decoding with a trigram word-level LM,
and beam search decoding with an RNN character-level LM.
Greedy decoding does not use any external information except
the RNN acoustic model. The trigram word LM was generated
with the IRSTLM toolkit [24] included in the KALDI speech
recognition tool. We used the WSJ non-verbalized punctuation
text corpus that contains 37M words to build the LM. For the
character-level language model (CLM), the HRNN based CLM
is employed [14]. In HRNN CLM, the gate is activated when the
input is word-boundary or the end-of-sentence. HRNN CLM is
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Table 3: WER and CER on WSJ eval92 test set when decoding
is conducted with RNN CLM.

Beam size Model CER WER

128 LSTM 2.71% 6.56%
LSTM-skip 2.96% 6.86%
HRNN with periodic gate 2.96% 6.89%
HRNN with trained gate 2.74% 6.43%
HRNN with λ = 0.01 3.10% 7.21%
HRNN with λ scheduling 2.37% 5.79%

512 LSTM 2.24% 5.80%
LSTM-skip 2.78% 6.39%
HRNN with periodic gate 2.66% 6.16%
HRNN with trained gate 2.54% 6.01%
HRNN with λ = 0.01 2.81% 6.58%
HRNN with λ scheduling 2.16% 5.19%

Table 4: The average value of the gates when tested on WSJ
eval92.

Model Average Value

HRNN with periodic gate 0.25
HRNN with trained gate 1
HRNN with λ = 0.01 0.17
HRNN with λ scheduling 0.74

trained with the same text corpus as that used for trigram word
LM training. The tree-structure based beam search decoding
algorithm [25] is used for evaluation.

The WER and CER of the models are shown in Table 1-
3. The models are evaluated on WSJ eval92 set, which is 42-
minute speech data. Table 4 shows the average value of gates
when HRNN models are tested on WSJ eval92 test set. The av-
erage value of the gates is related to the computational complex-
ity of the models because the gated layer operates only when the
gate value is 1. Using CLM improves the CER and WER signif-
icantly in all the models. When any language model is not ap-
plied, LSTM shows the lowest CER and WER, which is slightly
better than HRNN trained without phoneme boundary informa-
tion. However, when a language model is applied, HRNN with
λ scheduling shows the best performance regardless of the lan-
guage model.

Among the HRNN models, HRNN without any gate loss
term shows the second-best performance in most cases. Accord-
ing to Table 4, the gate in the model always shows an output of
1. Its computational complexity is equal to that of LSTM-skip,
but HRNN shows much lower word and character error rate. We
consider this is because skipping state updates before the gate
converges to 1 has a similar effect to Zoneout [26], which works
as a regularizer.

When training HRNN with the gate loss in the whole
training process, it shows worse recognition performance than
HRNN without the gate loss regardless of the decoding meth-
ods. Training HRNN with predefined phoneme boundary-
based hierarchy can degrade the recognition performance of the
model because the units of recognition, characters, differ from
phonemes. By training with the phoneme boundary labels only
in the first few epochs, which corresponds to HRNN with λ
scheduling, the HRNN can find improved hierarchical structure.

HRNN with the periodic gate shows the worst performance
when greedy decoding and word-level language model are used.
Interestingly, HRNN with the periodic gate shows better perfor-

mance than HRNN with λ = 0.01 when character-level lan-
guage model is used. It can be interpreted that HRNN with
the periodic gate lacks the character-level modeling capacity.
With a period of 4, the gated layer in HRNN considers 80 ms of
speech. Because some of the characters are pronounced in less
than 80 ms, they cannot be captured by the gated layer which is
updated every 80 ms.

Table 5 shows the published WER on WSJ eval92 test set.
When decoding is conducted with RNN CLM, we obtained the
recognition accuracy comparable to that of a human [1] with
only 6.4M parameters. Note that our HRNN model contains
the least number of parameters. Moreover, all other models ex-
cept HRNN are bidirectional RNN. Using a bidirectional RNN
for speech recognition causes additional delay because decod-
ing must be delayed until the end of speech. Considering this,
HRNN model is suitable for real-time speech recognition.

Table 5: Published WER on WSJ eval92 in the literature. Our
best models are also shown.

Model LM WER Params

Miao et al. [3] Trigram 7.34% 8.5M
Chorowski and Jaitly [4] Trigram 6.7% 6.6M
Hannun et al. [5] Bigram 14.1% 20.9M
Wu et al. [27] Trigram 8.2% 6.5M
Deep Speech2 [1] 5-gram 3.60% 100M
Human [1] 5.03% −
HRNN Trigram 10.69% 6.4M
HRNN RNN CLM 5.19% 6.4M

5. Concluding Remarks
In this paper, we used hierarchical recurrent neural networks
(HRNNs) for acoustic modeling in speech recognition. We
trained LSTM and HRNN with different gating algorithms. We
analyzed and compared the performance of each type of HRNN.
We also proposed an effective HRNN training algorithm for
acoustic modeling. By applying the proposed algorithm, WER
of 5.19% is obtained on WSJ eval92 with 6.4M parameters. In
our future work, we plan to apply HRNNs for other end-to-end
speech recognition models, such as the encoder-decoder [7] and
the RNN-transducer [9].
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[18] V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S.-F. Chang,
“Skip RNN: Learning to skip state updates in recurrent neural net-
works,” arXiv preprint arXiv:1708.06834, 2017.

[19] R. Girshick, “Fast R-CNN,” in Computer Vision (ICCV), 2015
IEEE International Conference on. IEEE, 2015, pp. 1440–1448.

[20] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal forced aligner: trainable text-speech align-
ment using Kaldi,” in Proceedings of interspeech, 2017.

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional Conference on Machine Learning, 2015, pp. 448–456.

[22] Y. Gal and Z. Ghahramani, “A theoretically grounded application
of dropout in recurrent neural networks,” in Advances in neural
information processing systems, 2016, pp. 1019–1027.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[24] M. Federico, N. Bertoldi, and M. Cettolo, “IRSTLM: an open
source toolkit for handling large scale language models,” in Ninth
Annual Conference of the International Speech Communication
Association, 2008.

[25] K. Hwang and W. Sung, “Character-level incremental speech
recognition with recurrent neural networks,” in Acoustics, Speech
and Signal Processing (ICASSP), 2016 IEEE International Con-
ference on. IEEE, 2016, pp. 5335–5339.

[26] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R.
Ke, A. Goyal, Y. Bengio, A. Courville, and C. Pal, “Zoneout:
Regularizing RNNs by randomly preserving hidden activations,”
Proceedings of the International Conference on Learning Repre-
sentations, 2017.

[27] Y. Wu, S. Zhang, Y. Zhang, Y. Bengio, and R. R. Salakhutdinov,
“On multiplicative integration with recurrent neural networks,” in
Advances in Neural Information Processing Systems, 2016, pp.
2856–2864.

3732


