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Abstract
We investigate the use of generative adversarial networks
(GANs) in speech dereverberation for robust speech recogni-
tion. GANs have been recently studied for speech enhancement
to remove additive noises, but there still lacks of a work to ex-
amine their ability in speech dereverberation and the advantages
of using GANs have not been fully established. In this paper,
we provide deep investigations in the use of GAN-based dere-
verberation front-end in ASR. First, we study the effectiveness
of different dereverberation networks (the generator in GAN)
and find that LSTM leads to a significant improvement as com-
pared with feed-forward DNN and CNN in our dataset. Sec-
ond, further adding residual connections in the deep LSTMs
can boost the performance as well. Finally, we find that, for
the success of GAN, it is important to update the generator and
the discriminator using the same mini-batch data during train-
ing. Moreover, using reverberant spectrogram as a condition
to discriminator, as suggested in previous studies, may degrade
the performance. In summary, our GAN-based dereverberation
front-end achieves 14%∼19% relative CER reduction as com-
pared to the baseline DNN dereverberation network when tested
on a strong multi-condition training acoustic model.
Index Terms: Speech dereverberation, robust speech recogni-
tion, generative adversarial nets, residual networks

1. Introduction
The performance of automatic speech recognition (ASR) has
been boosted tremendously in the last several years and state-of-
the-art systems can even reach the performance of professional
human transcribers in some conditions [1, 2]. However, room
reverberation often seriously degrades the ASR performance,
especially in far-field speech recognition where the talker is
away from the microphone [3, 4]. Therefore, more attention
has been paid recently in the research community to address
this issue.

In theory, reverberant speech can be regarded as a room im-
pulse response (RIR) convolving with the clean speech in the
time domain [5]. A straightforward approach is called speech
dereverberation, i.e., remove the reverberation from the con-
taminated speech. In this track, microphone array and multi-
channel signal processing are very helpful [6, 7], but single-
channel speech reverberation is still desirable in many real ap-
plications in which using multiple microphones may be im-
practical. Single-microphone speech dereverberation has been
intensively studied in the signal processing community and a
variety of approaches have been proposed [5, 8, 9, 10, 11].
Another approach to deal with reverberation (and noise) in
speech recognition is multi-condition training (MCT), in which
speech contaminated with reverberation, either simulated or
real-recorded, is added in the acoustic model training set, let-
ting the model learn the reverberation effects automatically. Al-
though the above approaches are reasonably effective, it is still
far away from claiming success in the fight against reverbera-
tion in speech recognition.

Recently, due to their strong regression learning abilities,
deep neutral networks (DNNs) have been used in speech en-
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hancement [12] and later in speech dereverberation [3, 4, 13].
The deep structure can be naturally regarded as a dereverbera-
tion filter that can learn the essential relationship between the
reverberant speech and its counterpart, i.e., the clean speech,
through a set of multi-condition data. Various deep structures,
e.g., feed-forward [14], recurrent [15] and convolutional [16],
have been explored in the field. Either direct spectral map-
ping [4, 14] or masking [17] can be considered in the dere-
verberation network. In the typical spectral mapping ap-
proach [12], the multi-condition data set used in the network
training usually consists of pairs of reverberant and clean speech
represented by log-power spectra (LPS). Note that in speech
recognition, the output of the dereverberation network can be
features like FBanks or MFCCs, which do not need to be in-
verted back to waveforms.

All the above DNN-based speech dereverberation ap-
proaches aim to minimize the mean square error (MSE) be-
tween the outputs of network and the ground truth. Hence,
there is an underlying hypothesis that the enhanced speech has
the minimal value in the MSE loss with the referenced clean
speech. However, the MSE objective function has very strong
implicit assumptions, e.g., independence of temporal or spatial,
equal importance of all signal samples, and inaccurate to de-
scribe the degree of signal fidelity [18]. To remedy this de-
ficiency, generative adversarial networks (GANs) [19], which
consist of a generator network (G) and a discriminator network
(D), learned through a min-max adversarial game, might be a
good choice. Specifically, Pascual et al. have recently demon-
strated the promising performance of GAN in speech enhance-
ment [20] in the presence of additive noise. In the SEGAN ap-
proach [20], the generatorG tries to learn the distribution of the
clean data and generate enhanced samples from noisy speech
to fool the discriminator D; while D aims to discriminate be-
tween the clean and enhanced samples (generated from G),
which captures the essential difference between them. While
SEGAN works on the waveform level, which targets to improve
the perceptual speech quality, Donahue et al. [21] have explored
GAN-based speech enhancement for robust speech recognition.
Specifically, in [21], GAN works on the log-Mel filter-bank
spectra instead of waveforms. The results have shown that
GAN enhancement improves the performance of a clean-trained
ASR system on noisy speech but it falls short of the perfor-
mance achieved by conventional MCT. By appending the GAN-
enhanced features to the noisy inputs and retraining, a 7% WER
improvement relative to the MTR system was achieved.

While the major goal of the above GAN approaches is to
remove additive noises, in this paper, we investigate the use
of GANs in the mapping-based speech dereverberation for ro-
bust speech recognition. Although the same framework can be
borrowed from these previous studies, we provide a series of
deep investigations in the use of dereverberation front-end in
ASR. First, we study the effectiveness of different dereverbera-
tion networks (used later as the GAN generator) and find that
LSTM dereverberating network can achieve superior speech
recognition performance as compared with feed-forward DNN
and CNN. Second, further adding residual connections in the
deep LSTMs can continuously boost the performance. Finally,
we find that it is important to update the generator G and the
discriminator D using the same mini-batch data during train-
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Figure 1: Architectures of different dereverberation networks.
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Figure 2: GAN based speech dereverberation framework.

ing for the success of GAN. Moreover, we discover that, us-
ing reverberant spectrogram as a condition to D, as suggested
in [21, 22], may degrade the performance of G. In summary,
using the dereverberation GAN can achieve 14%∼19% rela-
tive character error rate (CER) reduction as compared with the
DNN dereverberation baseline when tested on a strong multi-
condition training acoustic model.

2. Mapping based speech dereverberation
Speech dereverberation can be achieved by a typical mapping
approach [12], in which a regression DNN (shown in Fig. 1a)
is trained by pairs of reverberant and clean LPS and a linear ac-
tivation function at the output of DNN is adopted instead of a
nonlinear one. Moreover, the target LPS feature is usually nor-
malized globally over all training utterances into zero mean and
unit variance (CMVN). In the dereverberation stage, the LPS
features of input speech are fed into the well-trained regression
DNN to generate the corresponding enhanced LPS features. Fi-
nally, the dereverberated waveform is reconstructed from the
predicted spectral magnitude and the reverberant speech phase
with an overlap-add algorithm.

Besides LPS, the input and output of the dereverberation
DNN can be other speech features, e.g., MFCC and FBank.
The speech features do not need to be inverted back to wave-
forms, when used for robust ASR. In [23], results show that
the mapping from LPS to MFCC can achieve lower word er-
ror rate than the mapping from MFCC to MFCC in a speech
recognition task under additive noise conditions. This also indi-
cates that the transformation for different feature domains and
nonlinear dereverberation function can be learned by the neu-
ral network simultaneously. Furthermore, as shown in Fig. 1b
and 1c, CNN and LSTM can be used as enhancers as well. We
expect that these more powerful network structures can bring
further improvements in the speech dereverberation task. We
will elaborate the network configurations and evaluate the per-
formances of different networks later in Section 4.3.

3. Dereverberation GAN
3.1. GAN
Generative adversarial networks (GANs) [19] are generative
models implemented by two neural networks competing with
each other in a two-player min-max game. Specifically, the
generator network G tries to learn a distribution Pg(x) over
data x and a prior input noise variables pz(z). The aim is to
match the true data distribution Pdata(x) to fool the discrimi-

natorD. The discriminator networkD serves as a binary classi-
fier which aims to determine the probability that a given sample
comes from the real dataset rather than G. Because of the weak
guidance, the vanilla generative model cannot generate desir-
able samples. Hence the conditional GAN (CGAN) [24] was
proposed to steer the generation by considering extra informa-
tion xc with the following objective function:

min
G

max
D

V (G,D) = Ex∼pdata(x,xc)[logD(x, xc)]

+Exc∼pdata(xc),z∼pz(z)[log(1−D(G(z, xc), xc))] .
(1)

In order to stabilize training and increase the quality of the
generated samples inG, least-squares GAN (LSGAN) [25] was
further proposed and the objective function changes to

min
D

V (D) =
1

2
Ex∼pdata(x,xc)[(D(x, xc)− 1)2]

+
1

2
Exc∼pdata(xc),z∼pz(z)[D(G(z, xc))

2] ,
(2)

min
G

V (G) =
1

2
Exc∼pdata(xc),z∼pz(z)[(D(G(z, xc))−1)2] . (3)

3.2. Speech dereverberation with GAN
It is straightforward to use GAN in speech dereverberation and
Fig. 2 illustrates such a kind of architecture. It consists of a G
and a D, where G, serving as the mapper in conventional meth-
ods, tries to learn a transformation from reverberant speech to
clean speech and D tries to determine whether the input sam-
ples come from G(xc) or real-data x. Similar to [23], G aims
to learning a mapping from the LPS feature input to the MFCC
feature output which can be directly used in ASR. In some
works [21, 22], the latent code z is excluded from the generator
G to learn a direct mapping instead of a diversified translation
in the original image-to-image translation task [26]. We bor-
rowed this idea, but we remove the reverberant spectrogram as
a condition to D. As we will report in Section 4.5, the added
reverberant spectrogram as a condition to D not only increases
the parameter size of D, but also degrades the performance of
G. Therefore, we learn a generator distribution Pg(x) over the
conditional data Pdata(xc) with the following proposed objec-
tive function:

min
D

V (D) =
1

2
Ex∼pdata(x)

[(D(x)− 1)2]

+
1

2
Exc∼pdata(xc)[D(G(xc))

2] ,
(4)

min
G

V (G) =
1

2
Exc∼pdata(xc)[(D(G(xc))− 1)2] . (5)

To further improve the ability of the adversarial component,
previous CGAN approaches have indicated that it is beneficial
to mix the GAN objective function with some numerical loss
functions [24]. We follow this approach in the dereverberation
GAN approach and the MSE loss is controlled by a new hyper-
parameter λ. Finally Eq. (5) becomes

min
G

V (G) =
1

2
Exc∼pdata(xc)[(D(G(xc))− 1)2]

+
1

2
λLMSE(G(xc), x) .

(6)

In practice, the generatorG can be a feed-forward network,
a convolutional network or a LSTM RNN network, as we de-
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Table 1: CERs (%) of Clean and MCT acoustic models.

AM
Test Clean Real Simu

Clean 7.86 23.85 20.24
MCT 7.81 16.02 13.99

scribed in Section 2. Note that the discriminator D is only used
in the training and discarded in the dereverberation stage. In our
approach, a 2-layer LSTM without residual connection is set to
be the architecture of D.

4. Experiments and results
4.1. Datasets
In the experiments, we used a Mandarin corpus as our source of
clean speech data, which consists of 103,000 utterances (about
100hrs). The RIRs were from [27], including real-recorded
RIRs and simulated RIRs for small, medium and large rooms.
We randomly selected 97,000 utterances for network training
and 3000 utterances for validation, and convolved with the
RIRs (both real-recorded and simulated) to obtain the reverber-
ant utterances. The rest 3000 utterances were used for testing
and convolved with the real RIR and the simulated RIRs for
small, medium and large rooms. Finally we obtained a testing
set named ‘Real’ that contains 3000 reverberant speech utter-
ances convolved with real RIRs and another testing set named
‘Simu’ that contains 9000 reverberant speech utterances con-
volved with simulated RIRs (3000 for small/medium/large). To
test the generalization ability of our approach, we ensured the
RIRs used for training and testing were totally different. All
waveforms were sampled at 16 kHz. We used Kaldi [28] to
generate the reverberant speech by convolving the clean sig-
nal with the corresponding RIR. As for feature extraction, the
frame length was set to 25 ms with a frame shift of 10 ms.

4.2. ASR back-end
Our speech dereverberation front-end was used for speech
recognition experiments. We used Kaldi to train our back-
end ASR system with the similar acoustic model architecture
and features in [29]. The original training dataset consists of
1600 hrs Mandarin speech data. We used speed-perturbation
and volume-perturbation techniques [30] to do data augmen-
tation. Hence the clean model were trained using 4800 hrs of
speech data (1600 × 3). We also trained an acoustic model
(AM) using multi-condition training (MCT) strategy. The train-
ing data for the MCT model is 6400 hrs (1600 × 4), includ-
ing the above 4800 hrs of clean data and 1600 hrs of reverber-
ant data generated by convolving the clean data with the RIRs
in [27] as the dereverberation front-end.

The time delay neural network (TDNN) acoustic model
(AM) had 6 layers, and each layer had 850 rectified linear units
(ReLUs) with batch renormalization (BRN) [31]. The input
contexts of TDNN AM were set to [−2,2]-{−1,2}-{−3,3}-
{−7,2}-{−3,3}-{0} and the output softmax layer had 5795
units. The notation [−2,2] means we splice together frames
t − 2 through t + 2 at the input layer and the notation {−1,2}
means we splice together the input at the current frame minus
1 and the current frame plus 2. The input of the AM was 40-
dimensional MFCC. All the speech dereverberation front-ends
were tested on both Clean and MCR AMs. A trigram language
model (LM), which was trained on about 2 TB scripts with more
than 100,000 words in the vocabulary, was used for decoding in
the experiments. We also used entropy-based parameter prun-
ing [32] and the threshold was set to be 10−8.

The baseline results of Clean and MCT model are shown in
Table 1. We can see a significant increase in CER when speech
is contaminated with reverberations. In extending the training
data of acoustic model by adding reverberant speech, the MCT
AM can greatly reduce CER.

4.3. Mapping-based speech dereverberation
We first investigated the speech dereverberation performances
of different networks and input features in the mapping-based

Table 2: CERs (%) of different front-end networks.

Input Method Clean AM MCT AM
Real Simu Real Simu

MFCC
DNN 17.86 16.63 16.31 14.72

RCED 18.28 16.73 16.76 15.09
LSTM 15.38 13.37 14.21 12.46

LPS
DNN 16.62 15.33 15.35 14.03

RCED 15.55 14.15 14.15 13.09
LSTM 15.04 13.16 13.97 12.20

Table 3: CER (%) comparisons for different layers and residual
connection architectures.

Method Clean AM MCT AM
Real Simu Real Simu

2-layer LSTM 15.41 13.50 14.25 12.55
+ Res-I 16.18 14.41 14.99 13.06
+ Res-L 16.13 13.74 14.61 12.65
4-layer LSTM 15.04 13.16 13.97 12.20
+ Res-I 15.81 13.48 14.60 12.47
+ Res-L 14.99 13.13 13.90 12.22
8-layer LSTM divergence
+ Res-I 15.53 13.55 14.48 12.49
+ Res-L 14.67 12.75 13.62 12.04

approach. Later we will select the best network as the gen-
erator in the GAN-based speech dereverberation. Specifi-
cally, we tested three different dereverberation networks, i.e.,
feed-forward DNN, redundant convolutional encoder decoder
(RCED) and LSTM. As shown in Fig. 1, the DNN has 4 hidden
layers and each of which contains 1024 ReLU neurons. The
structure of the RCED is similar with [16] except the last layer.
We changed the last filter CNN layer to a fully connected output
layer as shown in Fig. 1b, because our input and target features
were not in the same dimension. The input feature contains a
context window of 11 frames (t±5) for the DNN and the RCED.
The number of filters and filter width of RCED model were set
to 12-16-20-24-32-24-20-16-12 and 13-11-9-7-7-7-9-11-13, re-
spectively. The learning rate was set to 0.001 with a mini-batch
size of 256. Moreover, BRN was also used for DNN and RCED
training. Instead of using vanilla LSTM, we adopted an LSTM
with recurrent projection layer (LSTMP) [33], which means we
do not need to add an extra layer to do residual add like sDNN2
in [34] to avoid dimension mismatch. The LSTM has 4 LSTMP
layers followed by a linear output layer. Each LSTMP layer has
760 memory cells and 257 projection units and the input to the
LSTM is a single acoustic frame. The learning rate was set to
0.0003 and the model was trained with 8 full-length utterances
parallel processing.

All the models explored here were optimized with the
Adam [35] method and initialized with the Xavier [36] algo-
rithm. We also used exponential decay to decrease the learning
rate which was similar with Kaldi nnet31 and the terminated
learning rate was 5 orders of magnitude smaller than the initial
learning rate.

In Table 2, we list all experimental results on both Clean
and MCT AMs. Firstly, we observe consistent improvement
on all dereverberation networks by replacing MFCC with LPS
features as the network input. Here the LPS feature is 257 di-
mension and the MFCC feature is 40 dimensions. Note that
the output of all the dereverberation networks is 40-dimension
MFCC which is fed into the ASR system. This conclusion is
consistent with that in [23], where LPS performs better than
MFCC when used as the input of a denoising network.

When we compare Table 2 with Table 1, we can find that the
mapping-based dereverberation works quite well. When tested
on the Clean AM, all the dereverberation networks are effec-
tive with significant CER reduction; when tested on the MCT

1egs/wsj/s5/steps/libs/nnet3/train/common.py(get learning rate)
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Table 4: CERs (%) comparisons by previous mapping based networks and our proposed framework. “DB” means we use different
mini-batch data to update the parameters of GAN and “CD” means we add the conditional information to input of D. Relative
improvements are given in parentheses w.r.t. the corresponding DNN model.

Method Clean AM MCT AM
Real Simu Real Simu

SEGAN 32.98 (−98.44) 37.14 (−142.27) 30.18 (−96.61) 32.37 (−130.72)
DNN 16.62 (0.00) 15.33 (0.00) 15.35 (0.00) 14.03 (0.00)
LSTM 15.04 (9.51) 13.16 (14.16) 13.97 (8.99) 12.20 (13.04)
+ Res 14.99 (9.81) 13.13 (14.35) 13.90 (9.45) 12.22 (12.90)
+ GAN 14.07 (15.34) 12.02 (21.59) 13.15 (14.33) 11.42 (18.60)
+ GAN+Res 14.10 (15.16) 11.96 (21.98) 13.14 (14.40) 11.40 (18.75)
+ GAN+Res (DB) 15.72 (5.42) 13.95 (9.00) 14.60 (4.89) 12.83 (8.55)
+ GAN+Res+CD 14.27 (14.14) 12.19 (20.48) 13.38 (12.83) 11.43 (18.53)

AM, the dereverberation networks with the LPS input are still
effective with apparent CER reduction. Comparing different
model structures, we discover that LSTM achieves the best per-
formance. For instance, the LPS-LSTM dereverberation net-
work reduces the CER from 23.85% (real-reverberation added)
to 15.04% for the Clean AM and reduces the CER from 16.02%
(real-reverberation added) to 13.97% for the MCT AM. We be-
lieve that the superior peformance is because of the LSTM’s
ability to model long-term contextual information that is essen-
tial is the speech dereverberation task. We also find RCED-
CNN is not good when MFCC is used as the input. We will use
LSTM as our network in the rest of the experiments.

4.4. Adding ResNet
Table 3 shows the results of different residual connection ar-
chitectures. The layer-wise residual connection (Res-L) struc-
ture can be seen in Fig. 1c; while the input residual connection
(Res-I) structure is similar with Res-L and more details can be
found in [37]. As we expected, it’s not necessary to add residual
connections to shallow networks. Performances degrade when
residual connections are used in a 2-layer LSTM. Res-L always
performs better than Res-I. This is reasonable because Res-L
tries to learn the residue of the high-level abstract feature while
Res-I just learns the residue of the input feature. When the
LSTM is as deep as 4 layers, Res-L starts to work and the lowest
CERs are achieved when the LSTM has 8 layers. As training a
8-layer LSTM is time-consuming, we perform the GAN exper-
iments with a 4-layer LSTM generator in the following.

4.5. Speech dereverberation with GAN
We finally investigated the ability of GAN in mapping-based
speech dereverberation. We also reproduced the SEGAN ap-
proach [20] with the open-source codes2 as a comparison. As
shown in Table 4, SEGAN degrades the ASR performance
within our expectation, which is consistent with the reported
results in [21]. We believe this is because SEGAN aims to im-
prove the perception of noisy speech and time-domain enhance-
ment may be not appropriate for reverberant speech recognition.

In the proposed GAN-based methods, the architecture of
G is consistent with that in Fig. 1c with 4 hidden LSTMP lay-
ers. The architecture of D is similar with G but contains only
2 LSTMP layers and the cell number and the projection dimen-
sion are set to 256 and 40, respectively. The hyper-parameter
λ in Eq. (6) was set to 200 and the learning rate of G and D
were set to 0.00008 and 0.0003, respectively. In each iteration,
we updated the parameters of G twice and the parameters of D
once. To stabilizing GAN training, we also add instance Gaus-
sian noise to the MFCC input of D3. In Table 4, we demon-
strate that using GAN (in LSTM+GAN) is not only viable but
also outperforms the LSTMs.

At the early stage of our experiments, we updated the pa-
rameters of G and D using different mini-batch data like the
ways they do in image tasks. In other words, the parameters

2https://github.com/santi-pdp/segan
3http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-

training/

of D were updated using one mini-batch data and then the pa-
rameters of G were updated using a new mini-batch data. We
found that this training strategy—LSTM+GAN+Res (DB) in
the second-to-last row of Table 4—was quite unstable in our
experiments and we always achieved results worse than the non-
adversarial training (e.g., LSTM+Res) as shown in Table 4. In-
stead, when we tried to update the parameters of G and D us-
ing the same mini-batch data, we achieved consistently better
results (LSTM+GAN+Res in Table 4). We believe that this
strategy is essential in making our GAN approach perform-
ing well. Adding residual connections works for most cases.
LSTM+GAN+Res lowered the MCT AM CER from 15.35%
down to 13.14% with 14.4% relative CER reduction for the
Real set and lowered the MCT AM CER from 14.03% down to
11.40% with 18.75% relative CER reduction for the Simu set.
Finally, we also find the performance of LSTM+GAN+Res+CD
is worse than LSTM+GAN+Res. This means that adding the
reverberant spectrogram as a condition to D is useless to the
dereverberation performance.

5. Summary
In this paper, we provide a deep investigation of GAN in
mapping-based speech dereverberation for robust speech recog-
nition. In the selection of the generator network, we find that
LSTM achieves superior performance, while adding residual
connections (ResNets) in deep LSTMs can further boost the
performance. In the use of GAN, we find that it is essential
to update the generator and the discriminator using the same
mini-batch data during model training; and using reverberant
spectrogram as a condition to the discriminator may degrade the
performance. With the above findings, we are able to achieve
14%∼22% relative CER reduction in ASR as compared with a
DNN baseline, while the SEGAN baseline even does not work
on the ASR task. In the future, we plan to further explore the
use of GAN in more adverse conditions (both reverberant and
noisy) and try to combine the framework with joint-training
strategy to further improve the ASR performance.
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