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Abstract
System combination, which combines the outputs of multiple
systems or internal representations, is a powerful method to im-
prove the performance of machine learning tasks and has been
widely adopted in recent knowledge transfer learning. In this
study, to describe how to extract effective knowledge from an
ensemble of neural networks, we first examine several score fu-
sions from an ensemble of neural networks tasked with open vo-
cabulary spoken term detection, where the class probability of
the neural network is utilized as a similarity metric; then, we in-
vestigate the trade-off between confusion and dark knowledge.
From the experimental evaluation on open vocabulary spoken
term detection, we obtain 2.09% absolute gain as compared
to the best result from single systems. Furthermore, the per-
formance gains achieved via score fusion of class probabilities
exactly match the mathematical inequality for sum and power
means results, and that the gain achieved via summation of class
probabilities is consistently better than that achieved via score
fusion of power means. The experimental analysis confirms that
summation, which enhances the discriminative capability of the
superior class probability, can implement smoothed probability
distribution to yield more effective dark knowledge, while ade-
quately suppressing undesirable effects.
Index Terms: system combination, score fusion, dark knowl-
edge, similarity metric, open vocabulary spoken term detection

1. Introduction
System combination is an effective method to improve the per-
formance of machine learning tasks by combining their out-
puts from multiple systems or their internal representations.
Consequently, in automatic speech recognition (ASR) and spo-
ken term detection (STD), which is an ASR application, it has
also been reported that performance improvements could be
achieved via system combination, which combines the outputs
of multiple systems with diverse ASR components, such as an
acoustic model, a decoding framework, and audio segmenta-
tion [1–5]. Furthermore, with the increased implementation of
deep learning, system combination has been more aggressively
adopted in ASR and its various applications; significantly di-
verse models can be generated by setting different initial param-
eters and neural network structures, e.g., deep neural networks
(DNNs), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs) [6, 7]. [6] tested linear and log-linear
stacking methods for learning ensemble parameters following
learning of the weight parameters of low-level DNN, CNN, and
RNN systems. [7] proposed a joint model that is trained via a
DNN and CNN, i.e., two different types of neural networks.
Such improvements in system combination may result from the

complementary information, which preserves the relative confi-
dence of different outputs provided by multiple systems [8–10].
This complementary information is referred to as “dark knowl-
edge” in [9].

More recently, there has been growing interest in knowl-
edge transfer learning [10–16], which is also known as teacher-
student learning, is motivated by model compression [17], and
is strongly related to dark knowledge [9]. The main objective
of knowledge transfer learning is to train a small model (stu-
dent) by transferring knowledge from the outputs of another
large model (teacher), which is a single complex model or an
ensemble of models. Thus, large complex ensembles can be
compressed into a single smaller and faster model, usually with
less performance degradation. The demand for a single, smaller
model is increasing because high-accuracy DNNs are massive
and computationally expensive.

[11] trained a small-size DNN from a standard large-size
DNN by utilizing a large amount of untranscribed data. [10] em-
ployed temperature to extract a relatively larger amount of dark
knowledge from multiple systems. [12] reported on the trans-
fer learning between heterogeneous models, where the knowl-
edge of an accurate RNN is transferred to a small DNN. In
contrast, [13] detailed interesting research, demonstrating that
knowledge learned by simple models (DNN) can be effectively
used to guide the training of complex models (RNN) where the
teacher DNN is assumed weaker than the student RNN. [14]
linearly interpolated the class probabilities and proposed choos-
ing weights of the oracle to make a soft label. [15] transferred
the knowledge from ensembles of multilingual models to the
model of low-resource language. [16] presented two strategies
to leverage multiple teacher labels, switching teacher labels at
the mini-batch level and multiple teacher distribution by data
augmentation. In order to make a smaller student model close
to or outperform the performance of teacher model, the aim
of early approaches was how to distill richer knowledge from
the teacher model, where the approach of adopting temperature
in [10] was a representative method. More recently, the trend
has been to create various targets that comprise 1) an original
hard label, 2) a forced alignment hard label, which is the output
class from the teacher model, and 3) a soft label, which is the
class probability distribution of the teacher model. Then, the
enlarged targets are linearly combined or used in the framework
of data augmentation learning, where transfer learning is based
on the loss function, which is typically a linear combination of
Kullback-Leibler divergence for the soft label with probability
distribution, and cross-entropy for the hard label.

Motivated by these recent works, we examine a direct way
to use the dark knowledge from multiple neural networks in
open vocabulary STD tasks in which several score fusions of
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the class probabilities are used as a similarity metric. When the
STD task is performed via acoustic-level dynamic time warping
(DTW) matching, the class probability-based similarity metric
does not require a lexicon or language model; thus, the dark
knowledge, which is quantified by score fusion, can be inde-
pendently evaluated.

The remainder of this paper is organized as follows: Sec-
tion 2 describes how the class probability can be used as a sim-
ilarity metric for an open vocabulary STD task that is based
on acoustic-level DTW. Section 3 describes score fusion meth-
ods that are based on sum or power means on logit and class
probability. Section 4 presents the results of experimental eval-
uations. Finally, Section 5 concludes this paper.

2. Class probability as a similarity metric
The open vocabulary STD task to locate all occurrences of a
specified word/phrase in the search audio database [18, 19] is
usually implemented by using subword-based detection [20]
or acoustic-level DTW matching [21, 22]. Most current ASR
tasks typically comprise multiple states of a subword, with the
subword being a phoneme or its variant. The state is also
identical to the class, which is the output of the final soft-
max layer in the DNN. In acoustic-level DTW matching for
open vocabulary STD, a specified term is transformed into a
sequence consisting of Q states S = {s1, · · · , sq, · · · , sQ},
and the class (posterior) probability of p(sq|ot) is calculated
for the t-th frame of the target spoken database, in which
O = {o1, · · · , ot, · · · , oT } denotes the sequence of acoustic
observation vectors. For the observation vector at frame t, each
class probability of p(sq|ot) is calculated and then transformed
into the negative logarithm below. The acoustic-level DTW to
find optimal path for the state sequence is implemented on the
following:

− log(p(s1:q|ob:t))

= min




− log(p(s1:q|ob:t−1))− log(p(sq|ot)),
− log(p(s1:q−1|ob:t−1))− log(p(sq|ot)),
− log(p(s1:q−1|ob:t))− log(p(sq|ot))





(1)

Here, s1:q refers to the partly matched states from s1 to sq

of the specified term, and ob:t refers to the matched observations
from ob of the possible start frame b to ot of the current t-th
frame. Thus, the cumulative class probability of p(s1:q|ob:t)
indicates the putatively optimal path up to the q-th state and t-
th frame. The cumulative class probability of (1) is normalized
at the last state sQ by the frame number of the detected interval;
this normalized value is used as the similarity metric in a ranked
list.

〈Q∗, b∗, e∗〉

= arg min
{Q,b,e}

{ −1
e− b+ 1

log(p(s1:Q|ob:e))
} (2)

As the value of (2) approaches zero, it becomes increas-
ingly likely that the path of the observation sequence ob:e along
the state sequence s1:Q includes the uttered interval of the spec-
ified term. When the value is less than a predefined threshold
value, the path is regarded as a putative hit. The current STD
(also known as keyword search) typically implements large vo-
cabulary continuous speech recognition (LVCSR) in addition to
some form of lattice post-processing, to generate an expeditious

searchable index with reduced accuracy loss. As compared to
the currently trending methods, the acoustic-level DTW method
is expensive and time consuming. However, to further improve
performance of open vocabulary tasks that require the system
to detect an out-of-vocabulary term, the acoustic-level DTW
method can be adopted to re-score the top results of the compact
and high-speed system.

3. Score fusion methods
Recent studies showed that a large ensemble of models can
be transformed into a single small model [10–17]. Using the
knowledge distillation research in [10] as a reference, we ex-
amine the enrichment of class probability as a similarity metric
via fusion of multiple neural networks, where the enriched class
probability may be considered to represent dark knowledge. As
compared to linear interpolation, power means implementation
is a less empirical and more mathematically analytical method
to investigate the effectiveness of score fusion for comparably
strong models.

3.1. Fusion via sum and power means

In order to investigate the effectiveness of dark knowledge, we
implement the power mean of class probability. Class probabil-
ities of N systems, (p1, · · · , pN ) ∈ [0, 1], are fundamentally
positive real numbers; thus, the generalized power mean with
exponent k of the class probabilities is

Mk(p1, · · · , pN ) =

(
1

N

N∑

n=1

pkn

) 1
k

(3)

where the exponent k is real and non-zero. Note that M1

is the arithmetic mean (AM) of N class probabilities, M2 is
the quadratic mean (QM), M−1 is the harmonic mean (HM),
limk→0 Mk is the geometric mean (GM), and limk→∞Mk is
the maximum (MAX). These power means satisfy the inequal-
ity Ml ≥ Mm for all l > m, with equality if and only if
p1 = · · · = pN . In addition to the power means, we calcu-
late the sum (SUM) of class probabilities, as follows:

SUM = N ·M1(p1, · · · , pN ) =
N∑

n=1

pn (4)

Between SUM and MAX, the inequality of SUM ≥ MAX
is also satisfied, with equality if and only if all pn = 0 for
n = 1, · · · , j − 1, j + 1, · · · , N and pj ∈ [0, 1]. Finally, we
set the comparison experiments on the order of the inequality
among the sum and power means, SUM ≥ MAX ≥ QM ≥
AM ≥ GM ≥ HM. Usually, the ensemble of multiple neu-
ral networks for a soft label is calculated by taking the AM as
the average [10] or linearly interpolated from class probabili-
ties [14]. Centered on the unbiased AM, SUM, MAX, and QM
are biased to a higher probability, and GM and HM are biased
to a lower probability. In other words, according to the order of
the inequality, nearly all classes in which the probability is close
to zero will become relatively much smaller, and some classes
with higher probability can be far superior. Here, we set the fol-
lowing hypothesis: dark knowledge will become more effective
with more aggressive, discriminative fusion.

3.2. Fusion on logit or class probability

For ASR as a multi-class classification task, each output neuron
of a neural network represents a class s ∈ RC , where C is
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the number of classes. The following softmax function is used
to calculate class probability p(sc|ot) from logits zc, which is
excitation for the c-th class.

p(sc|ot) = exp(zc/T )∑C
i=1 exp(zi/T )

(5)

where T is the temperature to control dark knowledge and
is normally set to 1 [10]. A higher value of T produces a softer
probability distribution over classes. Here, it is necessary to
consider the trade-off between confusion and dark knowledge.

We examine score fusion on the levels of logit and class
probability. By first performing score fusion on a logit level
and then calculating the class probability via the softmax func-
tion of (5), the inequality resulting from a sum and power means
method is eliminated as the logit z range is (−∞,+∞). Con-
versely, fusion on the class probability maintains the inequality
as the class probability range is [0, 1]. Additionally, when fu-
sion is applied to the logit before applying the softmax function,
the class probability distribution can be controlled by tempera-
ture. Here, in the case of applying fusion as the sum on the
class probability, the sum, which is fSUM : [0, 1]→ [0, N ], vio-
lates the probabilistic constraint. In other words, the domain of
the sum extends linearly in the positive direction. However, the
sum may be the bias of the AM as shown in (4) and provides a
comparable performance to the AM; this has been confirmed in
our preliminary experiments although it has not been discussed
in this paper. We modified the summation to have the upper
value of the sum fixed at 1 to satisfy the probabilistic constraint∑N

n=1 pn(sc|ot) ∈ [0, 1] and still preserve the inequality. The
modified summation function fSUM′ : [0, 1] → [0, 1] is defined
as follows:

SUM′ def
= min

{ N∑

n=1

pn, 1
}

(6)

4. Experimental evaluation
4.1. Spoken term detection task

In this section, the results of the experiments conducted on NT-
CIR10 STD task data [23] are presented. The data comprised
28.6 h of 40,746 utterances for the target speech database, along
with 100 queries and their correct utterance spans. In the exper-
iments, we implemented 40-dimensional log-mel filterbank fea-
tures (FBANK) on 25-ms windows computed every 10 ms. The
first and second derivatives of a total of 120 dimensions were
extracted. A 186-h span of Corpus of Spontaneous Japanese
data [24] was used for bidirectional long short-term memory
(LSTM) RNN training [25, 26]. The LSTM-RNN comprised
one hidden layer with 1,024 units for each gate. The number of
classes for the output layer was 3,078 for the phonetic decision-
tree-based tied triphone state. The specifications are summa-
rized in Table 1.

Table 1: Summary of LSTM RNN specifications

Input layer 120 FBANK

Hidden layer 1 layer x 1,024 node
Bidirectional LSTM

Output layer 3,078 class

4.2. Baseline performance of single systems

To combine multiple neural networks, we trained eight bidirec-
tional LSTM-RNNs on two sets of training data and different
initial parameter values; random initial weights were uniformly
drawn from [-0.04, 0.04] by singular value decomposition. To
prepare Dataset 1, we divided each utterance to 0.25 s. For a
different training paradigm, the utterance length of Dataset 2
was padded to 2.22, 4.44, 8.35, and 13.9 s by bucketing silence
at the end of the utterance. All LSTM-RNNs were trained us-
ing up to 20 epochs, with a learning rate of 1.0e-4, and as based
on the cross-entropy criteria. To evaluate the single-value STD
performance, we calculated the mean average precision (mAP;
%) [27]. Table 2 summaries mAP(%) of eight single systems
as the baseline STD performance. With a small standard devia-
tion of 0.56, the results show the comparable strong models of
different initial parameters and datasets.

Table 2: mAP(%) of eight single STD systems trained with di-
verse bidirectional LSTM-RNNs.

Average Best Worst Std. dev.
80.67 81.73 80.08 0.56

4.3. Fusion on logits with temperature

The STD experiments were performed on logit-level fusion
with temperature. The fusion was first executed on logit z; the
class probabilities were then calculated by using (5). Because
the logit takes values between negative and positive infinity, and
thus the fusions of three power means, QM, GM, and HM vi-
olate the negative domain inequality, we only carried the score
fusion on logit via the original SUM of (4), MAX, and AM.

Table 3: mAP(%) results of applying different fusion methods
and temperatures (T) to the two most preferred single systems.

T=1 T=2 T=3 T=4
SUM 82.92 82.08 79.32 71.15
MAX 81.95 71.36 48.31 28.85
AM 82.08 71.15 47.27 27.71

Table 3 shows that the best performance of 82.92 is
achieved via SUM, and that all fusions with T = 1 lead to per-
formance gain compared to the best result of 81.73 from single
systems. However, a temperature increase resulted in markedly
degraded performance. The experimental results show that
there is a trade-off between the undesirable effects of smoothed
probability distribution and the effectiveness of dark knowl-
edge. The higher temperature-induced degradation associated
with SUM is comparably less prominent because the SUM is
a multiple of the AM on the logit-level fusion. As shown in
Fig. 1, as the temperature increases, the variance of probability
distribution from score fusion becomes dramatically smaller, re-
sulting in lower discriminative capability. However, compared
to the steeply smallized variance of MAX and AM, the variance
of SUM becomes smaller gradually. This difference in variance
accounts well for the performance degradation, as shown in Ta-
ble 3, and the trade-off between confusion and dark knowledge.

4.4. Fusion on class probabilities

Next, the STD experiments on fusion of class probabilities were
performed with a modified SUM′ (given as (6)) and five power
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Figure 1: Variance of probability distribution vs. temperature
of score fusion on logits. A base-10 log scale is used for the
vertical axis.

means. Additionally, all 2-way, 4-way, 6-way, and 8-way com-
binations of eight single neural networks were tested to empiri-
cally examine the fusion methods and performance gain accord-
ing to the number of combined networks.

Table 4: Average mAP(%) for all combinations and different
fusion methods. The values within the parentheses show the
best mAP in each combination and fusion.

2-way 4-way 6-way 8-way

SUM′
81.54 82.36 83.51

83.77(82.88) (83.38) (83.82)

MAX
81.70 82.18 82.28

82.16(83.10) (82.86) (82.64)

QM 81.72 82.22 82.38
82.45(82.85) (82.81) (82.86)

AM
81.66 82.16 82.34

82.49(82.48) (82.80) (82.73)

GM
81.47 81.85 81.99

81.93(82.30) (82.44) (82.39)

HM
81.11 81.37 81.43

81.41(82.06) (82.02) (81.78)

As shown in Table 4, increasing the number of combined
networks corresponded to linear performance improvements.
Among the fusion methods, the SUM′ of class probabilities
yielded the best performance. The results confirm that the
classes become more effectively discriminative by summation.
Regarding the fusion by power means, although the discrimi-
native classes were achieved and robustly prevented the local
minima or over-fitting, the undesired effects of smoothed distri-
bution increased, thereby yielding comparably less significant
gains.

Fig. 2 clearly shows that the performance gains via score
fusion of class probabilities exactly match the mathematical in-
equality of the sum and power means, SUM′ ≥ MAX ≥ QM ≥
AM ≥ GM ≥ HM. By summing the class probabilities of mul-
tiple neural networks, dark knowledge can be more effectively
utilized without the undesirable effects of smoothed distribu-
tion. From further observation of Fig. 2, large variances can
be observed in the lesser combinations. However, increasing
the number of combined networks increases performance sta-
bility. Particularly, the linearly increased gains are more ob-
vious for fusion by SUM′. Because the number of classes is

 80
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Figure 2: Box-whisker plot of mAP(%) for various score fusions
and combinations. The quartiles for the 2-, 4-, 6-, and 8-way
combinations were calculated by using 8C2 = 28, 8C4 = 70,
8C6 = 28, and 8C8 = 1, respectively. The three black solid
lines are single-system results presented for comparison.

generally extremely higher than the number of combined sys-
tems in ASR, it is practically infeasible for most of the class
probabilities achieved by SUM′ to be close to one.

5. Conclusions

In this study, we examined several fusion methods including
logits with temperature and class probabilities for an open vo-
cabulary STD task. The aim was to empirically investigate fu-
sion methods that more effectively use dark knowledge, and to
clarify the effectiveness of dark knowledge via experimental
evaluation. Performing fusion on logits with varying temper-
ature revealed that there is a trade-off between the undesirable
effects of smoothed probability distribution and the effective-
ness of dark knowledge, with performance degradations in the
case of fusion by sum being comparably less significant. We
achieved a maximum of 2.09% absolute gain relative to the best
result from single systems performing fusion on class probabil-
ities. Among the fusion methods of the class probabilities, the
performance gains achieved via summation are consistently bet-
ter than those achieved via power means. Furthermore, the ex-
perimental analyses of fusions on logits and class probabilities
confirmed that summation, which enhances the discriminative
power of superior class probability, is proficient at using dark
knowledge effectively, thus reducing the undesired effects of
smoothed probability distribution. It is especially notable that
the performance gains resulting from the fusion of class proba-
bilities exactly match the mathematical inequality for sum and
power means results. Based on the experimental evaluations, a
more analytical approach to fusion can be designed for open vo-
cabulary STD. Future work will include applying this technique
to knowledge transfer learning.
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