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Abstract
Recent approaches to word vector representations, e.g., ‘w2vec’
and ‘GloVe’, have been shown to be powerful methods for cap-
turing the semantics and syntax of words in a text. The ap-
proaches model the co-occurrences of words and recent suc-
cessful applications on written text have shown how the vector
representations and their interrelations represent the meaning
or sentiment in the text. Most applications have targeted writ-
ten language, however, in this paper, we investigate how these
models port to the spoken language domain where the text is the
result of (erroneous) automatic speech transcription. In particu-
lar, we are interested in the task of detecting signs of dementia
in a person’s spoken language. This is motivated by the fact that
early signs of dementia are known to affect a person’s ability to
express meaning articulately for example when they engage in a
conversation – something which is known to be cognitively very
demanding. We analyse conversations designed to probe peo-
ple’s short and long-term memory and propose three different
methods for how word vectors may be used in a classification
setup. We show that it is possible to identify dementia from
the output of a speech recogniser despite a high occurrence of
recognition errors.
Index Terms: clinical applications of speech technology,
pathological speech, dementia detection

1. Introduction
The number of people with dementia is increasing rapidly all
around the world. An estimated 50 million people were living
with dementia in 2017, and this is predicted to almost double
each 20 years soaring to 131.5 million by 2050 [1].

Early detection of dementia is a challenging task due to the
lack of reliable bio-markers, overlapping symptoms with nor-
mal ageing and low accuracy of existing cognitive screening
tools. The term dementia is used to describe a set of symptoms
arising from a range of progressive diseases such as Alzheimer’s
Disease. One of the often noticed symptoms are problems with
a person’s memory and language. This is known to affect object
naming, noun production and rates of verb usage. In general,
loss of vocabulary, impoverished/simplified syntax/semantics,
and overuse of semantically empty words are commonly found
in the language of people with dementia ([2, 3, 4]). Despite this,
relatively little research has focused on formal testing of the
communication and conversational ability of patients notwith-
standing this playing a significant role in the expert assessment
carried out by neurologists when diagnosing.

To address this, we have been investigating the extent to

which automatic analysis of structured conversations (answer-
ing predefined memory-probing questions) involving people
with memory problems can reveal signs of dementia in a per-
son’s speech and language. The hope is to be able to incorporate
such an automatic tool into the diagnostic pathway in current
memory services and thereby provide a low-cost, easy-to-use
and efficient route to the appropriate treatment.

In preliminary work using Conversation Analysis (CA) on
the interactions between patients and neurologists, Elsey et al.
found that identifying a small set of manual features enabled
the distinction between patients with neurodegenerative disor-
der (ND) 1 and those with Functional Memory Disorder (FMD)
[5, 6]. These are the two most common diagnostic categories
seen at many memory clinics because doctors in primary care
lack the expertise and tools to distinguish between them, and
hence will refer too many to memory clinics, where up to 50%
of patients seen do not have dementia. This leads to costly,
stressful, time consuming and ultimately unnecessary exami-
nations and scans. Distinguishing between FMD and ND is a
far harder problem than distinguishing between healthy controls
and e.g., people with Alzheimer’s disease. Elsey et al. found
that looking at the way FMD and ND patients are able to accu-
rately answer memory-probing questions such as what they did
in the weekend or when they last had a problem with their mem-
ory are very accurate indicators of which group they belong to
and hence which treatment they should be offered. The CA ap-
proach, however, needed manual transcriptions of the conversa-
tions and a qualitative analysis performed by an expert; thus it
is not feasible for large-scale use.

We subsequently demonstrated the feasibility of an auto-
matic system to perform the same task [7, 8]. In more recent
work, we investigated the possibility of creating a conversation-
based diagnostic test where even the neurologist is ”automated”,
i.e., they are replaced by an animated head on a computer screen
(an Intelligent Virtual Agent (IVA) ) [9]. Although we found
some differences between the neurology-led and IVA-led con-
versations (for example the length of people’s answers are dif-
ferent), we also found that the IVA-led conversations contain
sufficient discriminative information to support distinguishing
between the two diagnostic categories.

This paper expands on previous work by exploring the use
of recently proposed word vector representations that are known
to encode the meaning expressed in text. We investigate how
best to make use of such models for our conversational domain,
and to what degree the proposed methods generalise to other
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domains/databases. The original manual features from [5] re-
quired some understanding/intelligence on behalf of the human
extracting them. For example one feature was concerned with
the patient’s ”Inability to answer” which required a judgement
as to how and in which context phrases like ”Don’t know” were
used. In [8], this feature was ‘translated’ into a set of automat-
ically extracted but in effect shallow text-based features count-
ing things like the number of empty words used or the use of
”Don’t know” type phrases. In this paper, we show how the
word vector representations can be used to model differences
between the FMD, ND and other groups of patients encoun-
tered at memory clinics such as people with Mild Cognitive Im-
pairment (MCI) and Depressive Pseudo-Dementia (DPD) – two
diagnostic categories with very similar symptoms. This may
lead the way for deeper features/models of the conversational
patterns observed.

2. Dementia detection
Recently, a number of studies have focused on the automatic
detection of dementia using what has become the standard clas-
sification pipeline of starting with the audio signal and involv-
ing diarization, automatic speech recognition (ASR), feature ex-
traction/selection followed by classification. Most research has
focused on distinguishing between healthy controls and peo-
ple with Alzheimer’s disease, the most common cause of de-
mentia with some studies also involving people diagnosed with
MCI. Systems have used a combination of feature types ex-
tracted from the acoustic signal (such as duration, pauses and
general voice quality parameters), as well as from the text (such
as those based on part of speech tags, phonetic and word iden-
tity). Promising results have been reported on a variety of
data with systems initially developed for manual transcripts
[10, 11, 12, 13] and later on ASR transcripts with WERs of-
ten in the high 40s [14, 15, 16]. All of the text/transcript fea-
tures are somewhat shallow in nature though, and effectively
modelling semantic, lexical and linguistic characteristics with-
out much notion of word co-occurrence except at a relatively
simple level such as Wankerl et al ’s use of n-grams [17].

This paper describes novel work exploring how word vector
representation, based on word co-occurrence patterns, may be
deployed to capture the deeper meaning of a conversation. To
broaden up the task and generalisability of the proposed solu-
tions, we include additional diagnostic categories and compare
our two parallel corpora (neurology-led vs. IVA-led) with one
of the de facto publicly available databases in this domain, the
DementiaBank corpus [18].

3. Word vectors
Machine learning algorithms work on vectors of numbers, and
word embedding is a technique which is widely used to convert
text to numbers; instead of a word, a series of numbers are used.
Traditionally, techniques such as bag-of-words (BOW) [19] and
Frequency Inverse Document Frequency (TF-IDF) [20] were
used for word embedding with some success. Recently, more
successful approaches have used deep learning techniques to
produce vectors representing words. Two recently introduced
techniques are ‘w2vec’ [21, 22] and ‘GloVe’ [23] which are
both based on the co-occurrences of words, taking into account
the context (neighbouring words) in a text.

The ‘w2vec’ is trained using a simple three layer deep neu-
ral network (input, hidden and output layers). It can learn the
word vectors using two techniques: skip-gram and continuous

bag-of-words (CBOW). The skip-gram aims at predicting the
context from a given word, while the CBOW attempts to pre-
dict a word given a context. Generally, the skip-gram can cap-
ture more information than that captured by the semantics of
a single word, and using the negative sub-sampling technique
the skip-gram technique can outperform the CBOW. Mikolov
et al, demonstrated that the resulting ‘w2vec’ vectors exhibits
some interesting properties, for instance, that vector(“King”)
- vector(“Man”) + vector(“Woman”) is very close to the vec-
tor(“Queen”). Despite the amazing advantages of the ‘w2vec’,
it has some limitations including not taking into account the
global co-occurrence of the words in the whole corpus. The
‘GloVe’ (Global Vectors) adds the benefits of the matrix factori-
sation approaches to the skip-gram to capture the global statisti-
cal information. Instead of focusing only on the probabilities of
words in the context, the ratio of co-occurrence probabilities are
taken into account. In fact, the ‘GloVe’ attempts to associate the
logarithm of ratios of co-occurrence probabilities with the vec-
tor differences. The authors of the ‘w2vec’2 and ‘GloVe’3 have
both shared their pre-trained models for public use.

One of the main applications of the word vector encod-
ing techniques is sentinent analysis - the problem of identifying
opinions or moods in a piece of text. A popular benchmarks for
sentiment analysis is the ICL Internet Movie Database (IMDB)
containing 50000 movie reviews associated with positive or
negative sentiments (half for training and half for testing). In-
spired by the language modelling and probabilistic latent topic
models, [24] introduced a model for the vector representation
and achieved an accuracy of 88.89% for the binary classifica-
tion task. [25] attempted to extend the ‘w2vec’ model to make
vectors representing paragraphs or documents (‘doc2vec’). The
main idea was to add an extra token (ID) for each document
to the content while training the BOW or skip-gram model.
They reported 92.58% accuracy for the sentiment analysis task
of IMDB, however, other researchers have struggled to repro-
duce the same outcomes [26]. Combining CNNs (Convolu-
tional Neural Networks) with BLSTMs (Bidirectional Long
Short Term Memory) networks [27] resulted in a classification
rate of 89.7% for the IMDB sentiment analysis task. Random
embedding substitution obtained 88.98% accuracy by using a
normal LSTMs and 89.71% using BLSTM. [28] also reported
89% accuracy using CNN and LSTM. In addition to the senti-
ment analysis, the word vectors have been used in various NLP
tasks such as: Semantic Queries [29], Semantic Textual Simi-
larity [26], document analysis [30], and text understanding [31].

Recently, word vectors have been used in a number of
different tasks involving spoken language. [32] applied the
‘Doc2Vec’ to the ASR outputs of non-native English speaker
taking the TOEFL internet-based test (iBT) to score (measure)
the responses, and they observed a considerable amount of im-
provements comparing to using TF-IDF features. [33] used the
‘GloVe’ embedding to initialise the final dense layer of their
deep neural network to directly convert acoustic features to
words and reported reasonably low WER on the Switchboard
Call Home dataset.

The use of word vectors for detection of pathologies and
para-linguistic information in speech is very novel. [34] used
the ‘GloVe’ word vectors to detect depression from the tran-
scripts produced by the ASR on the de-identified speech (modi-
fying voice characteristics for privacy reasons). They split each

2http://mccormickml.com/2016/04/12/googles-pretrained-
word2vec-model-in-python/

3https://nlp.stanford.edu/projects/glove/
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turn of a speaker into a series of words. Each turn was then rep-
resented by summing up the normalised ‘GloVe’ word vectors
of the turn. They also considered applying a weight coefficient
to the vectors allowing them to assign more importance to the
rarer words. Then, they reduced the dimension of the turn vec-
tors by using the PCA algorithm and used an SVM classifier to
classify between depression and non-depression speech. They
gained 80% classification accuracy using de-identified speech
recognised by ASR (with 37.3% WER).

4. Detecting dementia with word vectors
For classification tasks we need to use the word vector repre-
sentations of the individual words in a transcript in a way that
enables us to distinguish the different classes. This section de-
scribes the four different approaches we have investigated. The
first two are based on composing a vector from the individual
word vectors and using these vectors to train a classifier as per
usual; the third method uses a cosine similarity as a measure
of how different a word vector is to typical word vectors found
in the labelled/known classes; the fourth approach models the
vectors from the first two approaches in a sequential model.

Assume a corpus C consists of n documents, Di; 1 ≤
i ≤ n. Each document consists of a number of words, Di =
wi1, ..., wij and each word can be converted to a vector V with
d dimensions as V (wij) using one of the pre-trained word vec-
tor algorithms like ‘w2vec’ or ‘GloVe’. Ignoring the non impor-
tant words in a text (stop list) as well as replicated words, we
can make a new vector by calculating the average of the word
vectors appended to the variance of the word vectors as:

(1)AV (Di) = [µ(Di), σ(Di)]

where µ and σ are the average and variance and AV (Di) has
dimensions 2∗d. The first proposed approach uses theAV (Di)
vectors for training a classifier.

The second approach is similar but based on a feature vector
derived as the difference between AV (Di) and a vector com-
bined over all training documents in each class. That is, for a
supervised classification task with m known classes, c1...m, we
can make m combined AV vectors: AV (cl); 1 <= l <= m.
The feature vector in this second approach is found by summing
the differences betweenAV (Di) and eachAV (cl). We refer to
this vector as DiffAV :

(2)DiffAV (Di) =
m∑

l=1

(AV (cl)−AV (Di)

As a third approach for representing documents, we calculate
the cosine similarity between the word vectors of a document
and the word vectors of each class. The value of the cosine
similarity will be normalised (sum up to one). We refer to this
as CosWV (cosine word vectors) and define it as:

(3)CosV (cl, Di) =
k∑

j=1

r∑

t=1

cos(V (wij), V (wlt))

CosWV (Di) =

[
1

M
CosV (c1, Di), ..,

1

M
CosV (cm, Di)

]

(4)where M = Max(CosV ). For the fourth and final approach,
we extract fixed length frames of the whole document using a
sliding window over the text (we have used 80 words and a 25%
overlap) and computing the AV and DiffAV vector of each
frame gives us SeqAV (Di) = [AV (Di1), ..., AV (Dif )] and
SeqDiffAV (Di) = [DiffAV (Di1), ..., DiffAV (Dif )].

5. Experimental setup
In addition to the IMDB dataset, which contains 50000 text en-
tries with feedback (either positive or negative reviews) about
movies, we have used four other datasets that are summarised
in Table 1: i) DementiaBank [18]: 473 text/audio files of peo-
ple with Alzheimer’s Disease and healthy controls describing
the ‘Cookie Theft'’ picture; ii) Hallam [8]: 45 neurologist-
patient conversations recorded at the memory clinic at the
Royal Hallamshire Hospital (Sheffield, UK) with the follow-
ing diagnostic categories: FMD, ND and Depressive Pseudo-
Dementia (DPD)4; iii) IVA [9]: 18 IVA-patient conversations
also recorded at the Royal Hallamshire Hospital with the fol-
lowing diagnostic categories: FMD, ND and MCI; and iv)
Seizure [35]: 241 neurologist-patient conversations with dif-
ferent types of seizure diagnosis (note that we only used this
for boosting ASRs' acoustic and language models). The IMDB
comes with separate training and test sets (25000 each), how-
ever the other, smaller datasets are split into training and test
sets using the standard k-fold cross validation (k=10).

Table 1: Datasets info including Len.:the total length in
hours/mins, Utts.:number of utterances, Spks.:number of speak-
ers, and Avg .Utts.:Average utterance length in seconds.

Dataset(No) Len. Utts. Spks. Avg. Utts.
DemBank(473) 8h 473 255 61.1s
Hallam(45) 12h 8970 117 4.8s
IVA(18) 3h 15m 785 40 14.9s
Seizure(241) 50h 16m 28k 597 6.3s

The spoken language based datasets are recognised by
ASRs trained with the Kaldi toolkit [36]. We followed the
TDDN-LSTM recipe after boosting our data sets with around
50 hours from the Seizure dataset. We used k-fold with k=5 as
a cross validation approach to train the ASRs. Table 2 shows
the average WER for the three data sets using HMM/GMM and
DNN models respectively. For all dataset, the DNNs outper-
formed significantly the HMM based ASRs and we obtained
25.6% WER for the IVA dataset.

Table 2: WER for the three datasets.

Dataset HMM/GMM DNN
DemBank 60.6% 45.3%
Hallam 57.9% 43.8%
IVA 43.3% 25.6%

6. Results
We initially used the ‘w2vec’ model pre-trained on the Google
News dataset (3 million vocabulary size, 100 billions words and
300 vector size) and the ‘GloVe’ model pre-trained on the Com-
mon Crawl (2.2 million vocabulary size, 840 billion words, and
300 vector size). However, in almost all cases the ‘GloVe’ word
vectors outperformed ‘w2vec’ vectors. Therefore, we have only
presented the ‘GloVe’ results in the following.

4patients showing cognitive decline in line with that of dementia but
caused by depression
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Table 3: Classification accuracy using Logistic Regression clas-
sifier and pre-defined GloVe word vectors.

Dataset AV DiffAV
IMDB 86.3% 86.4%
DemBank(Man) 69.8% 68.7%
DemBank(ASR) 58.4% 57.7%
Hallam(Man) 63.5% 63.5%
Hallam(ASR) 54.2% 45.8%
IVA(Man) 50.0% 45.0%
IVA(ASR) 55.0% 50.0%

6.1. Average and variance vector approaches

Table 3 shows classification accuracy across datasets for ap-
proaches 1 and 2 (based on vectors AV and DiffAV ) when
applied to the manual and ASR transcripts and using the Lo-
gistic Regression classifier. For almost all of the datasets, the
AV -based approach provides a classification accuracy that is
better than or almost equal to that of DiffAV .

6.2. Word Cosine similarity

The third approach is based on the cosine similarity. The
CosWV accumulation calculates the cosine similarity between
the words of each classes and the words of the text. This makes
it applicable when there are fewer numbers of training sam-
ples, however, as the numbers increases the calculation takes
a long time. We therefore only calculated CosWV for the two
smaller datasets, Hallam and IVA. Table 4 shows the accuracy
rate using a Logistic Regression classifier. Comparing to Ta-
ble 3 classification results gained by CosWV are remarkably
better than AV and DiffAV , especially for both IVA(Man)
and IVA(ASR) which has improved with up to around 20%.
Comparing ASR results with their manual transcript counter-
parts shows that results are the same or only slightly worse. That
is, this approach appears to be robust to recognition errors (that
are relatively high as seen in Table 2)

Table 4: 3-way classification accuracy using Logistic Regres-
sion classifier and CosWV for Hallam and IVA datasets.

Dataset Accuracy
Hallam(Man) 66.5%
Hallam(ASR) 65.8%
IVA(Man) 70%
IVA(ASR) 70%

6.3. Sequence classification

Deep neural network (DNN) approaches are very successful for
classification, but requires sufficient amounts of training data.
We do not yet have enough of the Hallam and IVA conversations
collected for this approach, but both the IMDB and Dementia-
Bank datasets are big enough. Fixed length text were taken from
the input text using the sliding window technique. We used a
combination of CNNs and LSTM (Keras python library [37])
to build the sequence classification model (256 LSTM cells and
64 filters for the CNNs, 5 kernels and 2 max polling with 0.2%
dropout rate). For IMDB, we achieved classification accuracy
rates of 90.7% and 92.5% using SeqAV and SeqDiffAV re-
spectively (Table 5). We trained a similar model for the Demen-

Table 5: Sequence Classification using CNN LSTM and pre-
defined GloVe word vectors.

Dataset SeqAV SeqDiffAV
IMDB 90.7% 92.5%
DemBank(Man) 74.0% 75.6%
DemBank(ASR) 61.7% 62.3%

tiaBank with over 400 samples for training in a 10-fold cross
validation (64 LSTM cells and the same CNN settings as the
IMDB). Similarly to IMDB, both DemBank(Man) and Dem-
Bank(ASR) sequence classification accuracy rates are consider-
ably higher than those achieved with the first two approaces (Ta-
ble 3) and SeqDiffAV always performs better than SeqAV .

6.4. Comparing to previous work

In our previous work, we trained binary classifiers (ND/FMD)
using acoustic, lexical and CA-inspired features. In order to
compare our results with those results, we broke down the 3-
way classifications into binary classifications for Hallam and
IVA. Table 6 shows the results for Hallam. For Hallam(Man),
the binary classifications all are over 70%. For the FMD vs. ND,
the achieved 70.8% (Hallam(Man)) is around 9% lower than
the 76.7% we gained using the 44 features (mix of 12 acous-
tic, 12 lexical and 20 CA-inspired features) [9]. Table 7 shows
the results for IVA. For the FMD vs. ND, the achieved 77.8%
(IVA(Man)) is slightly lower than the 81.8% from [9]. However,
FMD vs. ND for IVA(ASR) results in 100% accuracy (com-
pared to 90.9% using 44 features [9]). Note that in the previous
work we firstly tuned the classifier to get the best results for
the manual Hallamdata and then performed the classification.
However, in this study we only used the default parameters for
the classifier without tuning.

Table 6: Binary classifications for Hallam using CosWV .

Dataset FMD/ND FMD/DPD ND/DPD
Hallam(Man) 70.8% 75.8% 71.6%
Hallam(ASR) 62.0% 93.7% 75.9%

Table 7: Binary classifications for IVA using CosWV .

Dataset FMD/ND FMD/MCI ND/MCI
IVA(Man) 77.8% 57.1% 81.25%
IVA(ASR) 100% 75.0% 62.5%

7. Conclusions
In this exploratory and preliminary work, we have showed the
potential of using word vectors to help in detecting signs of de-
mentia in spoken language. Amongst the four approaches we
introduced in this study, the word cosine similarity vector was
the best, achieving over 65% accuracy for a challenging three-
way classification task for the Hallam dataset and 70% for the
IVA dataset. In addition, we showed that the method was robust
to errors introduced from automatic speech recognisers across a
number of datasets. In future work, we will add the word vec-
tor as a single feature to a set of other features (acoustic, lexi-
cal and CA-inspired) to improve the overall accuracy for both
three-way and binary classifications.
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