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Abstract

The task of personalized keyword detection system which also
performs text dependent speaker verification (TDSV) has re-
ceived substantial interest recently. Conventional approaches
to this task involve the development of the TDSV and wake-
up-word detection systems separately. In this paper, we show
that TDSV and keyword spotting (KWS) can be jointly mod-
eled using the convolutional long short term memory (CLSTM)
model architecture, where an initial convolutional feature map
is further processed by a LSTM recurrent network. Given a
small amount of training data for developing the CLSTM sys-
tem, we show that the model provides accurate detection of the
presence of the keyword in spoken utterance. For the TDSV
task, the MTL model can be well regularized using the CLSTM
training examples for personalized wake up task. The exper-
iments are performed for KWS wake up detection and TDSV
using the combined speech recordings from Wall Street Journal
(WSJ) and LibriSpeech corpus. In these experiments with mul-
tiple keywords, we illustrate that the proposed approach of MTL
significantly improves the performance of previously proposed
neural network based text dependent SV systems. We also ex-
perimentally illustrate that the CLSTM model provides signifi-
cant improvements over previously proposed keyword detection
systems as well (average relative improvements of 30% over
previous approaches).

Index Terms: Text dependent speaker verification, Key-
Word Spotting (KWS), Convolutional Long Short Term Mem-
ory (CLSTM) Network, Multi-task learning

1. Introduction

With the rapid outreach of personalized voice activated devices,
there is a growing demand for voice technology based authen-
tication consisting of keyword spotting (KWS) (wake-up word
detection) combined with text dependent speaker verification
(TDSV). In the recent past, several approaches have been pro-
posed for separately modeling the two tasks using deep neu-
ral networks (DNNs). For example, keyword spotting using
DNN/CNN models with whole word input speech patterns have
been explored in [1, 2]. These approaches avoid relying on
the traditional approach of using automatic speech recognition
(ASR) systems and therefore are particularly useful for new lan-
guages and domains where only few words are labeled. In these
methods, the network is trained directly to predict the keyword
of interest followed by posterior smoothing. The direct model-
ing also reduces the computational and memory requirements
significantly.

For TDSYV task, the conventional approach consists of train-
ing a Gaussian mixture model - universal background model
(GMM-UBM). The UBM is adapted and i-vector representa-
tions are derived for each speaker recording [3, 4]. The i-vectors

for the enrollment and test speakers are compared using a cosine
distance or a probabilistic linear discriminant analysis (PLDA)
model [5]. Recently, deep learning methods have been explored
for TDSV task where the DNN models are not directly used for
classification, but rather as a feature extractor which provides
speaker specific embeddings. The models are trained for classi-
fying training speakers and once the network is trained, the em-
beddings in the hidden layer are extracted for enrollment and
test speakers. Typically, a simple classifier using cosine dis-
tance is used for scoring in these approaches [6, 7, 8]. With
large amounts of per-speaker training data, these neural net-
work based approaches improve over the i-vector based meth-
ods [8, 7].

The performance of the DNN based approaches for TDSV
rely heavily on the availability of large amounts of background
training data. However, in many practical scenarios, the amount
of text dependent training data for background speakers would
be rather limited. In such a scenario, the GMM-UBM based
modeling continues to outperform the DNN based TDSV ap-
proaches [9]. This is primarily due to the over-training of the
DNN models on the training speakers and the DNN embeddings
do not generalize well to new speakers. The most common strat-
egy to overcome this is with pre-training and regularization ap-
proaches like dropout [10]. For small amount of background
training, even with dropout methods, the DNN based models
(with the best choice of architecture and activation functions)
provides an equal error rate (EER) which is about twice the
GMM-UBM system [9].

In this paper, we propose to develop a TDSV-KWS system
using multi-task network employing joint CLSTM and DNN
framework where keyword spotting and speaker identification
are trained. Multitask learning [11] is parallel learning of corre-
lated tasks using shared features through structure sharing[12]
or collaborative backpropagating from one system to another as
shown in [13]. The proposed model uses speech spectrogram
from a large contextual window (approximately of the duration
of the keyword of interest) processed with CNN feature em-
beddings which are shared for both the KWS and TDSV tasks.
In addition, MTL framework also provides a good solution to
the KWS task thereby enabling the joint detection of keywords
and speaker verification. While multitask learning was previ-
ously attempted for speaker verification [14] with large amounts
of background training data, the proposed approach performs
word detection on unrestricted speech with small amounts of
background training data (similar to [9]).

We evaluate the TDSV task using the proposed MTL frame-
work and compare the performance with previously proposed
neural network architectures [8, 15]. Similarly, the KWS wake
up task is compared against word based independent KWS sys-
tems [1, 2]. In these experiments, the CLSTM approach pro-
vides good improvements for KWS task. The CLSTM with

10.21437/Interspeech.2018-1759


http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1759.html

MTL setting also shows the best results for the TDSV task. In
both these tasks, the proposed model achieves significant im-
provements in equal error rate (EER) compared to the previ-
ously proposed neural network methods.

The rest of the paper is organized as follows. The base-
line neural network based systems for KWS and TDSV are dis-
cussed in Sec. 2. This is followed by detailed explanation of
the proposed multitask architecture in Sec. 3. The experimental
setup with information about data used for training and testing
as well as the performance measure is given in Sec. 4. The re-
sults of various experiments are provided in Sec. 5 along with a
detailed analysis.

2. Baseline Systems for KWS and TDSV
2.1. Keyword Spotting

Recently, an approach for keyword spotting using whole word
modeling was proposed using feedforward deep neural net-
works (DNNs) [1]. Here, a DNN is trained directly to predict
the keyword of interest, which is followed by posterior smooth-
ing. Unlike the conventional ASR based methods, the keyword
search in this case is restricted to the window of features used
in the DNN and posterior smoothing. In such a manner, the se-
quential search is simplified leading to low complexity keyword
detection system. This approach has been advanced with the use
of convolutional neural networks (CNNs)[16] which replace the
DNNs .

Although, there are several approaches to KWS [1, 2, 17,
18], we focus on Keyword/Filler neural network method [1, 2]
where only the speech signal corresponding to the considered
keyword is given the true label and everything else is considered
as false or filler. The network is trained to discriminate between
the two classes. We have implemented the feedforward [1], con-
volutional [2], recurrent networks- Long Short Term Memory
(LSTM) and Bidirectional-LSTM (BLSTM) [19] and convolu-
tional LSTM (CLSTM) models [20].

In CLSTM model, the convolutional layer discussed in Sec.
3 generates correlated feature maps. These feature maps are
then time distributed so as to retain the temporal structure of the
layer (unlike the flattening operation). Thus, we obtain a feature
map which accumulates all the frequencies in their respective
time steps which is then given as input to the LSTM layer.

2.2. Text Dependent Speaker Verification
2.2.1. d-vector Approach

Motivated largely by the success of the d-vector approach pro-
posed in [8], there have been several approaches reported over
the recent years [9, 7, 15, 14]. In this framework, a neural net-
work is trained using audio data and its respective speaker la-
bels. However, the inference is drawn from the last layer be-
fore softmax. During verification, the enrollment utterances are
averaged at the last layer inferences over the audio frames to
obtain a single vector, termed as the d-vector. The d-vector rep-
resenting the enrollment speaker is compared with the d-vector
from the test utterance. Various NN architectures like feedfor-
ward architecture [8, 9], convolutional network [15] and recur-
rent models have been proposed for TDSV. In our experiments
using these architectures for TDSV (reported in Sec. 5), the
recurrent architectures performed the poorest on small dataset
amongst other investigated architectures which are similar to
the findings from [9]. Since our dataset is quite small, the net-
work is prone to over-fitting. We attempt to overcome this effect

flatten

> () speaker3

conv LSTM feedforward
input
_’ O keyword
O filler
(O speakerl
(O speaker?2

1122

Figure 1: Multitask model of Text Dependent Speaker Verifi-
cation and Keyword Spotting. Here, convolutional (conv) is
shared across both the tasks represented in blue.

with dropout training (factor of 0.4 after the first layer and 0.2
in higher layers) in the feed forward network.

3. System Architecture
3.1. Feature Extraction

We use acoustic features f, which are described by normalized
32 dimensional log filter bank energy computed every 10 ms
over a window of 25 ms. For each keyword chosen, a window
size, t is considered based on the histogram spread of the key-
word duration in the training data. Using the window size ¢,
a training example is constructed with a symmetric window of
acoustic features having % frames on either side of every speech
feature vector. The center frame of this window is then associ-
ated with the corresponding label that indicates the presence or
absence of the keyword in the chosen ¢ frame window of acous-
tic features. We call this a positive example when the keyword
is part of the ¢ frame window and a negative example when it
is not. During the training, a portion of the examples that lie in
the boundary region of the chosen keyword are omitted. At the
end of this process, we get n X (¢ X f) features, where n is the
number of training examples.

3.2. Multitask Network Architecture

Text dependent speaker verification benefit by phonetic features
from (keyword spotting model), thus structure sharing is the
preferred multitask approach. Particularly, we share the lower
level representations of the network across the tasks as shown
in Fig. 1. The convolutional layer performs a two-dimensional
non-linear filtering of the input speech spectrogram which tends
to reduce the spectral variance present in speech utterances and
allows the modeling of local spectro-temporal correlations.
The first layer is a convolutional layer consisting of a con-
volution and max-pooling operation. The convolution operation
is achieved by weight sharing across the entire training sam-
ple [16]. We use 128 filters and ReLU activations. Here, each
training sample is given as a matrix (¢ X f), on which 2-D con-
volution is operated without zero-padding using a kernel size,
(m x n). This outputs k feature maps each of size (z X y)



train test (SPK) test (KWS)
Keyword t | nbspk nbutt avgutt min-max | nbspk nbutt avgutt min-max | +class - class
government | 75 84 834 9.9 6-29 94 419 4.5 4-5 1296 11664
company 71 144 1541 10.7 8-20 185 995 54 4-7 1901 17109
hundred 59 177 1776 10.0 8-14 347 1814 5.2 4-7 1901 17109
nineteen 79 144 1516 10.5 8-20 129 668 5.2 4-7 984 8856
thousand 77 136 1217 8.9 6-22 208 914 4.4 4-5 1901 17109
morning 69 132 976 7.4 6-15 279 1201 43 4-5 1901 17109
business 81 116 776 6.7 5-16 99 396 4.0 4-4 1901 17109

Table 1: Specifications of the sub-dataset created using the combined recordings of Wall Street Journal (WSJ) and Librispeech. Here,
t - window size, nb spk - number of speakers; nb utt - number of utterances; avg utt - average utterance; min-max - minimum and

maximum number of utterances occurred per speaker.

where x is (¢t —m + 1) and y is (f —n + 1). We use non over-
lapping frequency dominant pooling with kernel size (1 x 4).
This choice of max pooling kernel was motivated by [2]. After
the pooling layer, the resultant output will be of dimension,

r—p
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This is flattened and passed on to the feedforward layers for
speaker mapping as shown in Fig. 1. The resultant CNN feature
map of dimensions given in Eq. 1 is also processed as tempo-
ral vector sequence along the x dimension using a long short
term memory (LSTM) network recurrent architecture [20] on
the keyword branch. Thus, the CLSTM model is capable of
modeling the local spectro-temporal correlations of the speech
spectrogram (using the early CNN layers) as well as the long
term dependencies in the speech utterance (using the LSTM
layers). While this model has shown promise for speech recog-
nition [21], this paper illustrates the first attempt using CLSTM
models for joint TDSV and KWS task.

+1)><(yT_q+1)

3.3. Posterior Handling
3.3.1. Keyword Spotting

The raw posteriors are taken from the softmax layer across
the entire sequence in observation. Smoothing is applied over
a window of size 10. This is done so as to eliminate spuri-
ous frames. The max value across the entire sequence is used
when making the decision. The metrics used in this work are
at the word level and not frame level (similar to the previous
approaches in [1, 2]).

3.3.2. Speaker Verification

When evaluating speaker verification task, the raw posteriors
are taken from the last hidden layer as described in [8]. The
posteriors are L2 normalized and averaged across the frames of
an utterance to obtain the d-vector. During enrollment, the final
d-vector representing the speaker is derived by averaging the d-
vector across the enrollment utterances. While testing, cosine
distance is used to compare the d-vector obtained from the test
utterance and the claimed speaker’s d-vector. Other classifiers
such as PLDA can also be employed instead of cosine distance
metric as shown in [14]. In our experiments, only 3 enrollment
utterances were used for computing the d-vector of the speaker.

3.3.3. Performance Metrics

The performance of both the tasks are evaluated by plotting a re-
ceiver operating characteristic(ROC) curve. Here, the false re-
ject rate (FRR) is computed per false alarm rate (FAR) by vary-
ing thresholds and an equal error rate (EER) is obtained. The
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Area under the Curve (AUC) obtained by plotting True Alarm
Rate (TAR) against FAR is also tabulated.

4. Experimental Setup
4.1. Data

We use a Kaldi recipe on the Librispeech corpus [22] to build a
deep belief network (DBN) - DNN ASR system. After the ASR
model training, the training data is forced aligned to generate
the ground truth labels for our task. The training and validation
data together consists of 1000 hours of speech sampled at 16
kHz and contains 292367 sentences spoken by 2484 speakers.
The WSJ (WSJO and WSJ1) corpus containing 39923 sentences
(test and train data combined) spoken by 381 speakers is also
force aligned with the Librispeech trained ASR model to gen-
erate labels. We note that all the WSJ data in our systems use
the clean WSJ corpus (wwv1 microphone). Pooling the two cor-
pora, seven keywords — business, company, government, hun-
dred, morning, nineteen and thousand were selected and a sub-
dataset containing recordings of the each keyword considered
was formed. The specifications of each of the sub-dataset is
tabulated in Table. 1. Here, test data mentioned for speaker ver-
ification task is a combination of both enrollment and testing
utterances and is a held-out set. The enrollment utterances were
randomly selected per speaker from this held-out test dataset.
For keyword spotting wake up task, sentences without the key-
word are also added to the test data also during evaluation (to
measure the false alarm rates accurately). However, the train
data tabulated in Table 1 remains the same across all experi-
ments. For TDSV, only the speech segments of the keyword are
picked from the train data, while the entire dataset is considered
for KWS.

4.2. Training

We use a fixed batch size of 128 and a stochastic gradient de-
scent with momentum algorithm for the optimization task. The
method of bold driver learning rate parameter with exponen-
tial decay [23] is adapted in the following manner - if the ac-
curacy on a validation set decreases after an epoch, then the
weights of the previous epoch are restored and the learning rate
is halved. The training process is stopped when there is no pos-
itive increase in the accuracy even after reducing the learning
rate thrice. The initial learning rate for all experiments are kept
at 0.02. Cross entropy as loss function is utilized.

In multitask network, the gradients in shared layer are prop-
agated as follows,

OLspi
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DNN [8] CNN [15] | LSTM [7] BLSTM CLSTM | CLSTM-MTL I-VEC
Keyword | EER AUC | EER AUC | EER AUC | EER AUC | EER AUC | EER AUC |EER AUC
government | 189 89.6 | 13.9 93.8 | 25.8 824|229 844|163 910|132 938 10.0 96.3
company | 140 937 | 9.0 96.7 | 144 93.1 | 154 923|124 95.0 | 87 97.1 7.7 975
hundred | 18.8 89.7 | 10.5 96.0 | 18.8 89.5 | 187 89.5 | 124 94.6 | 9.5 96.6 9.2 96.6
nineteen | 13.1 944 | 75 97.8 | 125 946 | 134 941 | 82 97.1 | 6.2 98.5 3.1 995
thousand | 14.1 93.7 | 99 96.2 | 19.5 884 |20.7 881 |11.7 951 | 9.0 96.7 72 975
morning | 19.1 88.7 | 155 925|242 836|252 828|182 89.8 |142 93.6 11.8 953
business | 17.4 915 | 102 964 | 151 925|162 91.7 [ 119 952 | 9.5 97.0 12.9 937
Average | 165 91.6 | 109 956 | 186 89.2 | 189 89.0 | 13.0 94.0 | 10.0  96.2 8.8 96.6

Table 2: Text Dependent Speaker Verification results for various neural network architectures and i-vector system trained on short

utterances and limited number of training samples. The highlighted values are the best amongst neural network system.

DNN [1] CNN [2] LSTM [17] BLSTM CLSTM CLSTM-MTL

Keyword EER AUC | EER AUC | EER AUC | EER AUC | EER AUC | EER AUC
government | 9.3 96.9 6.0 987 7.5 96.3 6.9 97.1 3.3 989 8.5 96.3
company 6.5 98.1 54 985 5.7 96.8 7.6 962 43 981 9.0 95.6
hundred 138 936 | 104 942 | 11.6 942 | 114 952 | 7.2 973 | 12.7 93.3
nineteen 9.6 96.6 7.9 97.8 7.8 96.6 1.1 96.3 5.6 981 7.1 97.1
thousand 7.5 98.0 | 59 97.7 5.5 97.8 5.7 980 | 43 988 | 64 97.5
morning 76 978 46  99.0 | 47 98.2 6.9 97.1 4.1 99.3 6.0 97.5
business 7.0  98.1 5.7 989 | 45 98.3 4.8 984 | 33 989 | 69 97.5
Average 8.7 97.0 | 6.6  96.7 6.8 96.9 7.3 96.9 4.6 985 8.1 96.4

Table 3: Keyword spotting results for various neural network architecture

The error from the text dependent SV network is backprop-
agated only for the keyword frames while both keyword and
non keyword error are backpropagated in the keyword branch.
To accommodate this weight imbalance, only during multi-
task training the batch size is increased in proportion to key-
word/filler ratio such that TDSV branch sees approximately 128
samples of keyword during each iteration which is the batch size
of all the baseline models in consideration.

5. Results

For completeness, an i-vector based TDSV is also implemented
in this paper. The i-vector features are derived using a 512 mix-
ture component GMM-UBM. This is followed by a total vari-
ability matrix model for dimensionality reduction to 256 dimen-
sions.

Note that, to have a fair comparison all the models are
designed with approximately similar parameters. In the mul-
titask, each branch has the same parameter as it’s respective
baseline. The results for various NN architectures for TDSV
is reported in Table 2. Amongst the neural network architec-
tures for speaker verification the feed-forward and recurrent ar-
chitectures perform the poorest. The convolutional neural net-
work model [15] is the most effective at capturing speaker spe-
cific features. While the stand-alone CLSTM model performs
poorly, sharing the lower level phonetic features has proven to
be beneficial and performs better than the CNN model. The
i-vector model shown in the last column of the Table further
improves over the neural network architectures. This also vali-
dates previous observations made along the same lines compar-
ing neural network architectures with i-vector models for small
amounts of training data [9].

In the case of KWS wake-up word detection, recurrent
architectures show significant improvements over the feed-
forward model. The CLSTM model provides the best KWS ac-
curacy among various NN models considered. The average rela-
tive improvements of 30% is achieved for the proposed CLSTM
model compared to the previous models based on LSTM frame-
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work [17]. Contrary to the results of speaker verification model,

The MTL framework does not improve the CLSTM architec-

ture. This may be attributed to the fact that preserving speaker

information may be diluting the goal of the KWS task which at-

tempts to derive the keywords irrespective of the target speaker.
In summary,

¢ The recurrent LSTM architectures are most suitable for
phonetic and word classification while the convolutional
architectures are suitable for both speaker and phonetic
features.

* Convolutional front-end feature maps combined with re-
current architectures is suitable for learning shared fea-
tures (speaker and phonetic).

e The MTL framework in combination with the CLSTM
model provides significant benefits for speaker verifica-
tion where the knowledge of phonetic information helps
in speaker clustering. However, the speaker information
in MTL is not beneficial for KWS task.

¢ The neural network approaches with small amounts of
speaker training data do not perform as well as the i-
vector features in TDSV task.

6. Conclusion

Concluding, we have investigated various neural network ar-
chitectures for text dependent speaker verification and keyword
spotting and proposed a multitask architecture with a convolu-
tional front-end. We have also demonstrated the effectiveness of
learning shared feature representations of phonetic and speaker
features for the speaker verification task.
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