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Abstract
Direct modeling of waveform generation for speech synthesis,
e.g. WaveNet, has made significant progress on improving the
naturalness and clarity of TTS. Such deep neural network-based
models can generate highly realistic speech but at high compu-
tational and memory costs. We propose here a novel neural
glottal vocoder which tends to bridge the gap between the tra-
ditional parametric vocoder and end-to-end speech sample gen-
eration. In the analysis, speech signals are decomposed into
corresponding glottal source signals and vocal tract filters by
the glottal inverse filtering. Glottal pulses are parameterized
into energy, DCT coefficients (shape) and phase. The phase tra-
jectory of successive glottal pulses is rendered with a trainable
weighting matrix to keep a smooth pitch synchronous phase tra-
jectory. We design a hybrid, i.e., both feed-forward and recur-
rent, neural network to reconstruct the glottal waveform includ-
ing the optimized weighting matrix. Speech is then synthesized
by filtering the generated glottal waveform with the vocal tract
filter. The new neural glottal vocoder can generate high-quality
speech with efficient computations. Subjective tests show that
it gets an MOS score of 4.12 and 75% preference over the con-
ventional glottal vocoder with a perceived quality comparable
to WaveNet and natural recording in analysis-by-synthesis.
Index Terms: statistical parametric speech synthesis, neural
vocoder, glottal waveform generation, phase weighting matrix

1. Introduction
Statistical parametric speech synthesis (SPSS) is a widely used
paradigm to produce successive and flexible high quality speech
with low computational and memory cost in text-to-speech
(TTS). The quality of SPSS system is mainly affected by three
factors: vocoder, acoustic model accuracy and over-smoothing
[1]. Recently, deep neural networks, especially the sequential
neural network [2, 3], has improved the model accuracy and al-
leviate the over-smoothing issue. Despite those improvements,
the synthetic speech quality is still limited by the vocoder,
which causes the gap between SPSS and unit concatenation ap-
proaches.

Vocoders are used for speech parametrization and wave-
form generation in the SPSS system. The quality of analysis-
by-synthesis reflects the final synthetic speech quality in natu-
ralness and similarity. Source-filter based vocoder is one of the
most popular and high quality ways to parameterize, modify,
and reconstruct waveform, e.g. STRAIGHT [4, 5], glottDNN
[6], IT-FTE [7], etc., which are proposed to improve the per-
ceptual quality while alleviating the ‘buzziness’ and ‘muffled-
ness’ problems [1]. The differences between them are mainly
the extraction and parameterization methods of the excitation
signal. STRAIGHT is a high quality channel vocoder, which
analyzes the speech into smoothed time-frequency represen-
tation using pitch-adaptive way then model the excitation by
the periodic and aperiodic component in several frequency

bands. GlottDNN is one of series glottal vocoders [8, 9, 10].
The physiologically meaningful glottal waveform, which rep-
resents the time-derivative of the air flow generated from vo-
cal folds [8], is extracted by glottal inverse filtering (GIF) [11]
and parameterizes to glottal features. IT-FTE, a kind of wave-
form interpolation vocoder [12], decomposes the excitation into
slowly evolved waveform (SEW) and rapidly evolved wave-
form (REW) and parameterizes their spectrum by DCT coef-
ficients. Although the vocoders above have improved the per-
ceptual quality of synthetic speech, an inevitable loss has been
made during the parameterization and reconstruction stage, as
there are some assumptions which are not accurate.

Recently, as the rapid development of deep learning and
the increased computational power, some advanced and compli-
cated autoregressive generative models have been successfully
applied to complex distribution for wideband raw audio sam-
ples. Specifically, WaveNet [13], SampleRNN [14] and Wav-
eRNN [15] can generate realistic and impressive voice quality
with appropriate conditions [16]. These model architectures di-
rectly use audio samples with long-range temporal dependences
by applying a very deep model with complicated non-linear ac-
tivations. Different from traditional parametric vocoders, the
autoregressive models address the statistical parametric speech
synthesis problem from another angle, by skipping the difficulty
of speech signal analysis and synthesis. However, such autore-
gressive models are a lot more computational and more memory
expensive than traditional parametric vocoders.

In this paper, we propose a novel neural glottal vocoder
which uses vocoder features with appropriate design of the neu-
ral network to achieve waveform-like voice quality as raw gen-
erative models in frame-level. By domain knowledge from
speech signal processing, our approach largely improves the
efficiency and flexibility of speech generation. More specifi-
cally, we design a glottal waveform generative neural network
by referring to the generation process of waveform interpolation
vocoders from given features. In analysis stage, speech signals
are decomposed into corresponding glottal source signals and
vocal tract filters by the glottal inverse filtering. The glottal clo-
sure instants (GCI) are detected while glottal pulse prototypes
are extracted accordingly. Glottal pulses are parameterized into
energy, DCT coefficients (shape) and phase. The phase tra-
jectory of successive glottal pulses is rendered with a trainable
weighting matrix to keep a smooth pitch synchronous phase tra-
jectory. Speech is then synthesized by filtering the generated
glottal source signal with the vocal tract filter. We expect the
proposed glottal neural vocoder to generate high quality speech
with low computational and memory cost.

This paper is organized as follows. Section 2 describes the
details of speech signal analysis and the proposed neural net-
work for glottal waveform generation, which is followed by
evaluation of the proposed neural glottal vocoder in Section 3.
Section 4 is the conclusion.
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2. The proposed glottal neural vocoder
The proposed glottal neural vocoder consists of a glottal fea-
ture extractor and a hybrid neural network for glottal wave-
form generation. The speech is first decomposed into the glot-
tal source signal and the vocal tract filter by glottal inverse fil-
tering. After glottal closure instant detection, glottal features
such as phase, shape and energy of each pitch cycle are ex-
tracted in pitch-synchronized analysis. With these extracted
glottal features, a hybrid neural network is designed accord-
ing to the characteristic of each feature, which consists of a
trainable phase weighting matrix, energy applied glottal pulse
through a long-short-term memory (LSTM) and generation of
glottal waveform. The speech is then synthesized by filtering
the generated glottal waveform with the vocal tract filter.

2.1. Glottal signal analysis and features

2.1.1. glottal inverse filtering

Glottal inverse filtering is a procedure to estimate glottal source
signal and vocal tract filters from the speech signal. Here we
adopt the iterative adaptive inverse filtering (IAIF) [11] algo-
rithm, which can automatically decompose the glottal source
and the vocal tract in adaptive manner and converge with a few
iterations. The vocal tract filters are then parameterized as line
spectrum pair (LSP) coefficients.

2.1.2. glottal feature extraction

The block diagram of glottal signal analysis and extracted fea-
tures is shown in Figure 1. We extract the glottal features by re-
ferring to the waveform interpolation vocoders. These features
are the fundamental phase, shape and energy features, where the
fundamental phase represents the time series and fundamental
frequency information, the shape and energy feature represent
the characteristic waveform (CW) information. In the perspec-
tive of waveform interpolation coding [17], the glottal pulse and
the fundamental phase together form a characteristic waveform
surface. Let u(n, φ) denote a periodic function with the fun-
damental phase φ extracted at the n-th frame. Then the period
signal u(n, φ) can be represented as follows:

u(n, φ) =

P (n)/2∑

k=1

[Akcos(kφ) +Bksin(kφ)], (1)

where the fundamental phase φ(n,m) which denotes the m-th
component of the CW extracted at the n-th frame is defined as
φ(n,m) = 2πm/P (n). P (n) is the time-varying pitch pe-
riod in the n-th frame. Ak and Bk denote the k-th discrete-
time Fourier series coefficients of the characteristic waveform.
Thus fundamental phase and CW features are necessary to re-
construct the glottal waveform.

A voice/unvoiced (V/UV) detection is applied to discrim-
inate between the voiced frame and the unvoiced frame. We
use GCI detection to mark anchor points which represent the
beginning of each pitch cycle for voiced segments. For the un-
voiced segments, pseudo anchor points are marked according to
the interpolated F0 between the nearest voiced frame. Then the
fundamental phase is linear interpolated between the neighbor-
ing anchor points from 0 to 2π on sample-level in both voiced
and unvoiced frame according to the definition.

To extract shape and energy, the glottal pulse is extracted
and interpolated to a fixed length. The energy of interpolated
glottal pulse is calculated and transformed to Logarithm. The

shape feature is extracted by normalizing the interpolated glot-
tal pulse to unit energy and represented as DCT coefficients.
Then the pitch-synchronized shape and energy features are re-
arranged into each frame by linear interpolation. The funda-
mental phase feature are also stacked together in frame-level.
Now, all the features are represented in frame-level which can
be directly used in glottal waveform generative model.
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Figure 1: Block diagram of glottal signal analysis.

2.2. Hybrid neural network for glottal waveform genera-
tion

In this section, we introduce how the extracted glottal features
work in the proposed neural network. The straight forward way
is to put in all the useful features and calculate the loss regard-
ing the final waveform. However, it doesn't work well in our ini-
tial experiment. Those features could not be effectively learned
by the network, even worse than directly reconstruct the glottal
waveform through definition. It reminds us to carefully design
and use these different features. Thus, we design a trainable
weighting matrix as part of the generative model to handle the
phase feature and a LSTM neural network for shape and energy
features. Then the product of weighting matrix and LSTM go
through two fully connected (FC) layers to predict the target
glottal waveform.

2.2.1. phase-based weighting matrix

As introduced above, phase information represents the timing
for waveform interpolation. This feature should be separated
and well handled before multiplying with energy and glottal
pulse. Here we revisit a phase-based weighting matrix to recon-
struct the glottal waveform. Let φ(n, k) denote the k-th com-
ponent of phase in the n-th frame, and c(n, l) denote the l-th
component of the CW in the n-th frame. The glottal waveform
u(n, φ(n, k)) can be reconstructed as follows:

u(n, φ(n, k)) =
∞∑

l=−∞
c(n, lTs)sinc(φ(n, k)− lTs)

≈
L∑

l=1

c(n, lTs)f(φ(n, k)− lTs)),

(2)

where sinc(t) = sin(t)/t represents the sinc function. L is the
length of the CW. Ts = 2π/L represents the sampling interval
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Figure 2: Overview of the glottal waveform generative neural network.

of the CW. The equation in (2) requests the CW satisfying the
Nyquist sampling rate. As the length of CW is finite, the sinc
function can be replaced by other interpolation functions in the
local region, e.g. spline functions, represented as f(t). Thus,
we get the approximation equation in (2).

Let the following variables Φ(n), c(n) and u(n,Φ(n))
represent the vectorized phase φ(n, k), CW c(n, l) and recon-
structed waveform u(n, φ(n, k) in the n-th frame, respectively:

Φ(n) = [φ(n, 1), φ(n, 2), · · ·, φ(n,K)]T,

c(n) = [c(n, Ts), c(n, 2Ts), · · ·, c(n,LTs)]T,

u(n,Φ(n)) = [u(n, φ(n, 1)), · · ·, u(n, φ(n,K))]T,

F k,l(Φ(n)) = f(φ(n, k)− lTs),

(3)

where K is the number of samples in one frame and L is the
CW length. F (Φ(n)) is defined as the phase-based weighting
matrix, k ∈ [1,K] and l ∈ [1, L].

Then we have the vector version of equation (2):

u(n,Φ(n)) = F (Φ(n))c(n). (4)

The formula above shows that the reconstructed waveform
u(n,Φ(n)) can be decomposed to the product of the weight-
ing matrix F (Φ(n)) and the CW vector c(n). It inspires us to
leverage neural network to predict phase-based weighting ma-
trix and the CW then multiply them to reconstruct the glottal
waveform.

2.2.2. hybrid neural network

It is not efficient to simply stack the phase, shape and energy
features as input feature vector and train the network regarding
the glottal waveform as it is showed in our initial experiment.
Hence, we design the network for each feature with considera-
tion of each role who plays in the reconstruction process intro-
duced above.

The designed hybrid glottal waveform generative neural
network is shown in Figure 2. The phase-based weighting ma-
trix is introduced to reconstruct the glottal waveform through
weighting the CW component, as shown in equation (4). The
equation (3) shows that the weighting matrix function F (·) is a
complicated non-linear function of the phase vector Φ(n). Thus,
we use two fully connected layers followed by different non-
linear activations to simulate the phase-based weighting func-
tion F (·). As the CW has been slowly changing in voiced seg-
ments and rapidly changing in unvoiced segments, we adopt
LSTM to capture the history sequence information. We use the
different activations as ReLU and sigmoid to increase the reg-
ularization and boundary smoothness for phase weighting ma-
trix, and tanh for the LSTM.

To construct the weighting matrix, the phase vector is
stacked to matrix in the same manner as the matrix F (Φ(n))

defined in equation (3). The shape feature is multiplied by
the energy after exponential operation to recover the original
amplitude of CW. Then the energy modulated shape feature is
feed to the LSTM with V/UV feature. After the sigmoid acti-
vation function, the weighting matrix is multiplied by the out-
put of the LSTM, which represents the weighting multiplication
in equation (4). The glottal waveform is generated after pass-
ing the product through two additional fully connected layers.
Mean square error (MSE) is adopted as the loss function during
training. We find the learning curve of proposed hybrid neural
network performs much better than the simple network which
stacks all the features together with the same model size.
Finally, the vocal tract feature represented as LSP coefficients
are transformed to vocal tract filters. After glottal waveform
generation, the final speech is synthesized by linear convolution
using the vocal tract filters on glottal waveform.

3. Experiments
The data base consists of over 16,000 sentences approximately
20 hours recorded from a professional US female speaker. We
choose 15,000, 500, and 500 utterances as training, validation
and test set, respectively. The sampling rate of the corpus is 16
kHz.

In the analysis stage, the vocal tract features and glot-
tal source features are extracted in pitch-synchronized analy-
sis then interpolated to the frame as 2.5 ms (40 samples) in
length. The phase feature is merged into one frame phase vec-
tor every 40 samples. As shown in Table 1, 30-dimension LSP
coefficients are extracted as vocal tract features, 64-dimension
DCT coefficients and 1-dimension energy in Logarithm and 1-
dimension V/UV flag as glottal features.

In the experiment, the dimensionality of the hidden fully
connected layers is set to 512, while the cell dimension of
LSTM is set to 512 with project dimension 512. For the train-
ing, we use the RMSProp optimizer and set the truncation
length to 10 and mini-batch size to 200. The hybrid neural
network is trained on Tesla K80 using the Microsoft Cognitive
Toolkit CNTK1 [18].

Table 1: Speech features and dimension per frame.

Feature name Dimension per frame

Fundamental phase 40
Glottal shape (DCT) 64
Glottal energy (Log) 1
V/UV 1
Vocal tract (LSP) 30

1https://github.com/Microsoft/CNTK
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Figure 3: Visualization of the phase-based weighting matrix.
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Figure 4: Demonstration of the glottal waveform estimated by
GIF(top), generated by the proposed glottal neural vocoder
(middle) and generated by the glottal vocoder(bottom) in
analysis-by-synthesis.

The visualization of the phase-based weighting matrix in
the fine tuned glottal waveform generative model is shown in
Figure 3. The x,y and z axis represent the phase, the CW index
and the weight value, respectively. As the phase changes from 0
to 2π, the weight vector slowly evolves while weighting differ-
ent parts of CW components, which verifies our derivation and
design of the hybrid generative model.

The perceptual quality of the proposed glottal neural
vocoder is evaluated by performing an A/B preference test and
a mean opinion score (MOS) test compared with two vocoders
plus natural recordings. The first vocoder is the glottal vocoder
of glottHMM [8], which has the released version2. The second
one is the WaveNet with 20 layers depth conditioned on Mel-
spectrum as a vocoder [19]. The analysis-by-synthesis result for
glottal features using the proposed method is illustrated in Fig-
ure 4, which shows the original glottal waveform extracted by
GIF from natural recording and the generated glottal waveform
by the proposed glottal neural vocoder and the glottal vocoder.

In the A/B preference test, the proposed glottal neural
vocoder and the glottal vocoder are tested through analysis-
by-synthesis. 50 utterances are randomly selected from the
evaluation set. 15 listeners are asked to provide quality judge-
ments and their preferences in naturalness of two given synthe-

2http://www.helsinki.fi/speechsciences/synthesis/glott.html

Table 2: The MOS score and computational cost.

Voice name FLOPS MOS

Recording − 4.53 ± 0.08
WaveNet vocoder 209.7G 4.51 ± 0.05
Proposed neural vocoder 767.5M 4.12 ± 0.05
Glottal vocoder 101.3M 3.48 ± 0.05

Figure 5: Results of A/B preference test(%).

sis speech. The results of the A/B preference test are presented
in Figure 5. It can be clearly seen that our approach outperforms
the glottal vocoder by 75% preference, which demonstrates the
effectiveness of our neural glottal vocoder over the traditional
parametric glottal vocoder.

In MOS test, the WaveNet vocoder and the glottal vocoder
are chosen to compare with the proposed glottal neural vocoder
through analysis-by-synthesis. The WaveNet vocoder is trained
with the same corpus and condition as Mel-spectrum, 20 layers
with discretized mixture Logistic loss [20]. 50 utterances are
randomly selected from evaluation set. 20 listeners are asked
to give scores from 1 (Bad) to 5 (Excellent) in naturalness of
synthesis speech and recording. The MOS test in Table 2 shows
that the WaveNet gets the highest score in these three vocoders
and very close to realistic speech. The proposed glottal neural
network gets much higher quality than the parametric glottal
vocoder, which is consistent with the A/B preference test.

Further more, we also analysis the computational cost of
these three vocoders in the MOS test. The results of the MOS
score and the corresponding computational cost of each vocoder
are presented in Table 2. We use the float-point operations per
second (FLOPS) as measurement of computational cost, which
shows the float-point operations required to synthesize one sec-
ond speech waveform. The computational cost of WaveNet is
the most expensive of all, nearly three hundred times of the pro-
posed vocoder. The proposed glottal neural vocoder achieves
significant higher quality than the glottal vocoder at a quite ac-
ceptable cost.

4. Conclusion
In this paper, we propose a novel neural glottal vocoder for
speech synthesis, which explores the capability of glottal fea-
tures for reconstructing glottal waveform with the utilization of
a hybrid deep neural network. With the high quality of recon-
structed glottal waveform, we could get highly natural synthe-
sized speech quality comparing with traditional vocoder, getting
rid of the ‘vocoding’ effect, closing to waveform-like voice. Al-
though current voice quality is still not as good as raw genera-
tive mode like WaveNet, the computational cost is much lower.
Besides glottal waveform generation, in the next work, we will
continue to make the end-to-end neural vocoder combining with
the vocal tract filter features to the final waveform, which will
further improve the voice quality.
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