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Abstract 

External broadband signal excitation applied at the speaker (or 

singer)’s mouth has previously been successfully used to 

estimate acoustic resonances of the vocal tract during speaking 

and singing. In this study, we used a modified, low cost, light-

weight, pocket-sized and simplified version of this 

measurement technique, with reduced sampling time and 

improved low frequency detection, so that such vocal tract 

measurements may be easily deployed ‘in the field’ and 

facilitate a more ‘ecological/natural’ tracking of phonatory 

gestures. This system was investigated with 6 volunteer 

speakers phonating 17 English vowels, and the relative 

impedance spectrum γ (‘gamma’) was measured. Although the 

γ(f) signal measured here for each phonatory gesture is 

somewhat noisier than the original technique, it is still 

believed to carry some important cues associated with vocal 

tract configuration that produce these vowels. Features were 

identified both in the amplitude and phase of γ(f) and three 

ensemble classifiers namely random forest, gradient boosting 
and adaboost were trained using them. The prediction output 

from these classifiers were combined using soft voting to 

predict a class label (front-central-back; open-close). This 

yielded an accuracy exceeding 80% in classifying the six 

nominal regions of the vowel plane. 

 

Index Terms: Vocal tract impedance, Machine learning, 

Relative impedance spectrum, Ensemble classifiers 

1. Introduction 

In this study, a modified version of the technique previously 

reported by [1-3] using an external broadband excitation was 

applied to speaker’s lips during phonation of 17 English 

vowels. This method has previously been used to successfully 

estimate acoustic resonances of the vocal tract during singing 

and speaking [4-7]. 

While the technique was previously used to only estimate 

vocal tract resonance frequencies, we now utilize the rest of 

the associated acoustic impedance spectrum data collected 

during phonation to assist with the automated classification of 

vowels. Further, the measurement hardware used has been 

reduced and simplified so that such vocal tract measurements 

may be easily deployed ‘in the field’ and facilitate a more 

‘ecological/natural’ tracking of phonatory gestures. 

Here we report the first implementation of machine 

learning techniques to analyze relative impedance spectrum (γ) 

information associated with speech, towards vowel cluster 

classification.  

The remainder of this paper is organized as follows. 

Section 2 describes the data collection procedure for this 

investigation. Experimental methodology is described in 

Section 3. This includes a brief overview of the features used 

for the classification process, description about the classifiers 

and various classifier configurations. Section 4 contains some 

results produced as part of this investigation. Finally, 

conclusions of this investigation can be found in Section 5.  

2. Data Collection  

2.1. Hardware  

The hardware offered in our current method is a smaller 

handheld version of the earlier hardware, with enhanced 

acoustic coupling and new electronics that allow greater 

signal:noise response of the detection system at the low 

frequency limit (~10dB boost @200 Hz) and reduced 

sampling time to 0.75 seconds (from 3 seconds): these reliably 

improve our system’s tracking ability for the first speech 

resonance for a range of male and female speakers, allows 

easy deployment ‘in the field’ and facilitates a more 

‘ecological/natural’ tracking of phonatory gestures.  

    In each measurement, we record both the relative 

impedance (gamma) and relative phase information from 200 

Hz to 4000 Hz, which includes the first, second and third 

speech resonances tracked for each vowel gesture, as well as 

the audio (.wav) file of the vowel phonation along with the 

broadband excitation signal introduced at the speaker’s lips. 

    The broadband excitation signal consists of harmonics of 

frequency 5.383 Hz (44100 Hz/(2^13)), between 200 and 4000 

Hz, summed, with optimized phases to improve the signal to 

noise [8]. The signal is delivered to a portable Nakamichi 

“mini cube” speaker (5 x 5 x 5 cm). This source of acoustic 

flow was placed at the speaker’s lips, with the lips resting on 

the speaker grill. Also located on the grill is a small electret 

microphone (Optimus 33-3013), which records both the sound 

of the speaker’s voice along with the excitation signal 

interacting with the subject’s vocal tract and the radiation 

field.  

    An initial calibration is made with the subject’s mouth 

closed: the measurement field is loaded purely by the 

impedance of the radiation field (ZRad) as seen at the subject’s 

lips, baffled by the subject’s face, and the signal is then 

adjusted such that the measured pressure signal at the lips is 

independent of frequency. With the calibration in place, 

subsequent measurements – during phonation – are then made 

with the subject vocalizing naturally (i.e., with the lips open). 

This resulting measurement (relative impedance spectrum, γ) 

is a ratio of the vocal tract impedance (ZTract) operating in 

parallel with ZRad, with respect to that measured earlier during 

calibration with the mouth closed (ZRad), in response to the 

same acoustic flow. (Because the output impedance of the 
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acoustic flow source is rather larger than both ZTract and ZRad, 

the acoustic flow may be assumed to be constant.)  

    While maxima in γ(f) have been shown to identify vocal 

tract resonances with a possible resolution of +/- 20, in this 

study, we are using other parameter features in the γ spectrum 

as the input for training a machine learning system, to identify 

target vowels 

2.2. Subjects  

6 speakers were recruited, and these speakers had the 

following characteristics:  

- 4 men, 2 women;  

- 4 native English speakers (2 Australian English, 2 

Singaporean English), 2 non-native English 

speakers; 

- 2 East Asian, 4 Caucasian 

2.3. Experimental Protocol  

Subjects were asked to phonate words of the form: h-V-d, 

where V is the target vowel between the consonants “h” and 

“d”. 13 English vowels + 4 rhotacized/retroflex vowels were 

explored, and the 17 target words used are as follows 

- Heed, hid, head, haired, haiRed 

- Who’d, herd, heRd, hud, hard, haRd, had 

- Hood, hoe’d hoard, hoaRd, hod 

(in this paper, the uppercase “R” indicates a 

rhotacized/retroflex version of these vowel sound is used). The 

relative distribution of these words and their corresponding 

target vowels – based loosely on the vowel plane [9] – is 

shown in Figure 1. (Note: the exact position of these vowels 

depends strictly on the English accent used by the speaker.) 

    While holding the target vowel for about 2-3 seconds, a 

gamma measurement was made. With 4-5 ‘takes’ of each 

target vowel, 17 target vowels: ~80 vowel gestures for each 

subject.  

 

 

Figure 1: Distribution of target words 

indicating[loosely] the relative relationships with 

target vowels used   

3. Methodology 

3.1. Experimental setup 

Figure 2 demonstrates the experimental setup. A classifier 

system using ensemble learning techniques was trained to 

classify the phonation labels. Ensemble learning perturbs-and-

combines a number of machine learning techniques together. 

Three ensemble learning classifiers namely random forest, 

gradient boosting and an adaboost classifier were trained and 

tested as part of this investigation. The chosen classifiers for 

this investigation contain multitude of decision trees and have 

been trained using γ(f) (both amplitude and phase) extracted 

from phonatory gestures.  To predict a class label, these 

classifiers were combined using soft voting (i.e., weighted 

averaging the predicted probabilities from the chosen 

classifiers). Details about γ and classifier systems can be found 

in the following subsections.   

 

 

Figure 2: Experimental Methodology. 

3.2. Training vs Testing Data 

The available data (γ(f) measured during phonation) is 

split into two sets, a training set and a test set. The 

classification model is built/trained using training data set and 

its performance is evaluated using the test set. The test set has 

never been seen by the model therefore the resulting 

performance can be considered as good guide to what can be 

expected when the model is applied to unseen data. Very 

often, the proportion chosen is 70% for the training set and 

30% for the test and we have followed the same in this 

investigation [10]. The rationale behind this 70-30 split is that 

more training data makes a better classification model whilst 

more test data results in accurate error estimate.  

3.3. Relative Impedance Spectrum γ(f) Analysis 

As mentioned earlier, amplitude and phase extracted from 

phonated signal were used as features to train the classifier 

system. The extracted features were post-processed using 

Savitzky-Golay FIR smoothing filter [11]. Further, the 

frequency of interest was limited between 200 and 4000 Hz. 

Figure 3 shows the resulting relative impedance spectrum γ(f) 

(amplitude and phase) for the target vowel sound [a] while 

phonating the word ‘Had’.  

 
Figure 3: Relative impedance spectrum γ(f) (amplitude and 

phase) for the target vowel [a] measured while phonating the 

word ‘Had’. 
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It is worth noting here that while two resonances are clearly 

indicated in the amplitude plot by the mid-point of the steep 

negative slope (~1850 Hz and ~2900 Hz) and accompanied 

with sharp minima in the phase plot, a rather weaker 

resonance at lower frequencies may additionally identified in 

the phase plot at ~650 Hz. 

3.4. Supervised Classifier Systems 

3.4.1. Random forest classifier 

Random forest uses multitude of decision trees. Decision trees 

split the given samples into many homogenous sets based on 

the significance of input feature values. The top most node in 

a decision tree contains samples from the entire population 

and is highly non-homogenous. However, upon splitting to 

sub-nodes, homogeneity of samples in such sub-nodes 

increase [12].    

    In the case of random forest, decision from many trees are 

considered as opposed to a single decision tree. The final 

predicted label will be that one which most of the trees voted 

for. An alternate way of combining decision is by averaging 

probabilistic prediction from each individual decision tree. In 

this investigation mode of the class labels predicted by the 

individual tree was chosen to be the final predicted label [13, 

14]. 

3.4.2. Gradient Boosting classifier 

Gradient boosting also uses ensemble of decision trees. In 

gradient boosting, a simple regression predictor (for e.g. one-

layer decision tree) is fitted for the data and then amount of 

the error per data point in the predictions is computed (i.e., 

error residual). A model (for e.g. another one-layer decision 

tree) is then created to predict this error residual. Finally, a 

new model is created by combining these two predictors (i.e., 

the original predictor and error residual prediction model). 

This new model will be more complex and is more accurate 

than the one-layer decision tree with which the data was 

initially fitted. This process continues over and over again for 

the number of classifiers one wants in the ensemble [15, 16]. 

3.4.3. Adaboost classifier 

Adaboost learning starts with fitting a simple classifier (for 

e.g. a one-layer decision tree) on the data. Such a one-layer 

decision tree will result in a lot of error data points (i.e., 

misclassified data points). Weights are now assigned to 

original data points: higher weights to misclassified data 

points and lower weights to correctly classified data. The 

successive classifier will be trained in such a way that it tries 

to correctly classify those error data points or in other words 

tries to achieve a low weighted error. The process continues 

by increasing weights for incorrectly classified points and 

decreasing those of correctly classified for the next round and 

continues over the number of classifiers in the ensemble [15, 

17]. 

    Number of decision tree estimators used in this 

investigation for the random forest, gradient boosting and 

adaboost classifiers are 250, 250 and 100 respectively. 

Further, we assign equal weights while soft-voting to estimate 

the final prediction.  

4. Results 

4.1. Front-central-back classification 

Table 1 shows the results in terms of classification accuracy 

for front-central-back classifier system. Accuracy is estimated 

by comparing predicted labels with the actual labels. It is clear 

from the result that classifiers trained using gamma amplitude 

has outperformed those classifiers trained using phase feature. 

And this trend is consistent irrespective of the chosen 

classifier type. Now comparing the performance of various 

classifiers, random forest is marginally better than the other 

two for both amplitude and phase features.  

 

Table 1: Classification result of front-central-back classifier 

Classifier type 
Feature accuracy 

Amplitude Phase 

Random forest 90.4   82.4 

Gradient boosting 84.0   78.4 

Adaboost 89.6 79.2  

Soft voting 86.4 80.8  

     

    The accuracy result after soft voting the classifiers is further 

analyzed by looking at the confusion matrix and this is shown 

in Figure 4. Confusion matrix can be used to assess the 

performance of a classifier. For a good classifier, the resulting 

confusion matrix will look dominantly diagonal (i.e., values 

closer to one). All the off-diagonal elements in a confusion 

matrix represent percentage of misclassified data.  

 

(a) 
 

(b) 

Figure 4: Confusion matrix showing accuracy of 

softvoting classifier for front-central-back 

classification using (a) amplitude (b) phase 

It can be clearly seen from the confusion matrix that 

percentage of misclassification is higher when try to classify 

the input between front-middle and back-middle phonation. 

This is what one should expect. The amount of 

misclassification is marginally higher when the chosen feature 

is phase of gamma compared to the amplitude result. 

4.2. Closed-open classification 

The result of closed-open vowel plane classifier is shown in 

Table 2.  Classification accuracy was found to be marginally 

better when amplitude of gamma is used to classify the 

openness of a vowel and this is true irrespective of the 

classifier type. However, the random forest which was found 

to have an upper hand while classifying phonation to front-

central-back tends not to be the best among the three in this 
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context and its performance falls marginally short behind 

adaboost and gradient boost. However, with gamma phase as 

the feature, random forest captures back its top spot.  

The accuracy after soft voting the classifiers was analyzed 

using confusion matrix (see Figure 5). With gamma amplitude 

as feature, the percentage of misclassification between closed-

open and open-closed type is low and they are more or less the 

same. However, with gamma phase, the closed phonation 

misclassified as open phonation was found to be slightly 

higher.   

Table 2: Classification result of closed-open classifier. 

Classifier type 
Feature accuracy 

Amplitude Phase 

Random forest 81.1   77.9 

Gradient boosting 83.2   71.5 

Adaboost 83.2 73.7  

Soft voting 85.3 77.9  

  

 

(a) 
 

(b) 

Figure 5: Confusion matrix showing accuracy of 

softvoting classifier for closed-open classification 

using (a) amplitude (b) phase 

5. Conclusions 

We have shown the implementation of machine learning 

techniques to successfully classify vowels by analyzing 

relative impedance spectrum (γ) information collected using 

impedance measurement hardware which is simpler and more 

rudimentary than reported previously.   

The successful vowel classification using impedance data 

associated with speech produced, collected under such 

rudimentary recording conditions on a small handheld device, 

opens up opportunities for further implementation via mobile 

computing devices (e.g. smartphones, tablets, etc.), leading to 

potential work for voice tracking and training. 
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