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Abstract

Dysarthria is a manisfestation of the disruption in the neuro-
muscular physiology resulting in uneven, slow, slurred, harsh
or quiet speech. Dysarthric speech poses serious challenges to
automatic speech recognition, considering this speech is diffi-
cult to decipher for both humans and machines. The objective
of this work is to enhance dysarthric speech features to match
that of healthy control speech. We use a Time-Delay Neural
Network based Denoising Autoencoder (TDNN-DAE) to en-
hance the dysarthric speech features. The dysarthric speech thus
enhanced is recognized using a DNN-HMM based Automatic
Speech Recognition (ASR) engine. This methodology was eval-
uated for speaker-independent (SI) and speaker-adapted (SA)
systems. Absolute improvements of 13% and 3% was observed
in the ASR performance for SI and SA systems respectively as
compared with unenhanced dysarthric speech recognition.
Index Terms: Time-Delay Neural Network, Deep denoising
autoencoders, Dysarthric Speech, Speech Enhancement

1. Introduction

Speech production process comprises acoustic and linguistic
events that occur through the coordination of muscle groups
and neurological programming of muscle activities, to ensure
fluent and accurate articulation. Acquired or developmen-
tal dysarthria, results from the impairment of the motor ex-
ecution function and affects the speech itelligibility of a per-
son. Voice input-based interactions with smart devices perform
poorly for dysarthric speech. Research into automatic recogni-
tion of dysarthric speech has garnered much interest due to the
rising popularity and possibility of voice inputs, especially since
speech-based interaction is easier for persons with neuro-motor
disorders as compared to keypad inputs [1].

Several techniques are employed to improve ASR perfor-
mance for dysarthric speech: acoustic space enhancement, fea-
ture engineering, Deep Neural Networks (DNN), speaker adap-
tation, lexical model adaptation- individually or as a combina-
tion thereof. Formant re-synthesis preceded by modifications
of formant trajectories and energy, for dysarthric speech vow-
els showed significant improvement in perceptual evaluation
of intelligibility of CVC utterances [2]. Acoustic space mod-
ification carried out through temporal and frequency morph-
ing improved automatic dysarthric speech recognition as well
as subjective evaluation in [3]. It can be seen that temporal
adaptation based on dysarthria severity level improved the ASR
performamce for dysarthric speech recognition at each sever-
ity level [4]. A Convolutive Bottleneck Network (CBN) was
used for dysarthric speech feature extraction wherein the pool-
ing operations of the CBN resulted in features that were more
robust towards the small local fluctuations in dysarthric speech
and outperformed the traditional MFCC feature based recog-
nition [5]. A comparative study of several types of ASR sys-
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tems including maximum likelihood and maximum a poste-
riori (MAP) adaptation showed a significant improvement in
dysarthric speech recognition when speaker adaptation using
MAP adaptation was applied [6]. Word error rate for dysarthric
speech was reduced using voice parameters such as jitter and
shimmer along with multi-taper Mel-frequency Cepstral Coef-
ficients (MFCC) followed by speaker adaptation [7], and using
Elman back-propagation network (EBN) which is a recurrent,
self supervised neural network along with glottal features and
MFCC in [8]. A multi-stage deep neural network (DNN) train-
ing scheme is used to better model dysarthric speech, wherein
only a small amount of in-domain training data showed consid-
erable improvement in the recognition of dysarthric speech [9].
In [10], authors propose a DNN based interpretable model for
objective assessment of dysarthric speech that provides users
with an estimate of severity as well as a set of explanatory fea-
tures. Speaker selection and speaker adaptation techniques have
been employed to improve ASR performance for dysarthric
speechin [11, 12]. ASR configurations have been designed and
optimized using dysarthria severity level cues in [13, 14, 15].

It has been observed that the subjective perception-based
intelligibility performance for noisy and dysarthric speech is
correlated, indicating that there exists similarity in the informa-
tion processing of these two types of speech [16]. Extrapolat-
ing this to the objective assessment domain, we hypothesize that
techniques used for noisy speech may support dysarthric speech
processing as well. In this paper we explore the possibility of
using a Time-Delay Neural Network Denoising Autoencoder
(DAE) for dysarthric speech feature enhancement. DAEs have
been used to enhance speech features especially in noisy con-
ditions [17, 18, 19]. The objective is for the network to learn
a mapping between dysarthric speech features and the healthy
control speech features. This network is then used to enhance
the dysarthric speech features that are used in a DNN-HMM
based ASR for improved dysarthric speech recognition. ASR
performance indicates that the enhanced dysarthric speech fea-
tures are closer to healthy control speech features rather than
dysarthric speech features. Evaluation of our work is carried
out on Universal Access Dysarthric Speech corpus [20]. In our
earlier work [21], we had used a Deep Autoencoder to enhance
dysarthric test speech features, wherein the DAE was trained
using only healthy control speech. This is different from our
current work in the DAE configuration and the training proto-
col followed.

The rest of the paper is organized as follows. Section 2 de-
scribes the methodology employed to enhance speech features
for dysarthric speech recognition, Section 3 discusses the ex-
perimental setup, In Section 4 we discuss the results of our ex-
periments we conclude in Section 5.
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2. Dysarthric Speech Feature Enhancement

The process and techniques used to enhance dysarthric speech
features is described in this Section.

2.1. Time-Delay Neural Network

TDNN architecture is capable of representing relationships be-
tween events in time using a feature space representation of
these events [22]. Computation of the relationship between cur-
rent and past inputs is made possible by introducing delays to
the basic units of a traditional neural network as shown in Fig-
ure 1.

Figure 1: Time delay neural network unit [22]

The discovery of the acoustic features and the temporal re-
lationship between them independent of position of time en-
sures that the dysarthric speech features are not blurred by the
inherent small local fluctuations. Shorter temporal contexts are
used to learn the initial transforms whereas the hidden activa-
tions from longer contexts are used to train the deeper layers.
This enables the higher layers to learn longer temporal relation-
ships [23].

Back-propagation learning is used to train TDNN-DAE,
wherein the input features are extracted from noisy speech
and target features are extracted from the corresponding clean
speech.

2.2. Methodology

In traditional DAE training, the number of frames in the input
utterance must necessarily be equal to the number of frames
in the target utterance. This works well for scenarios wherein
noise added clean speech is the input and the corresponding
clean speech is the target. In this work, we intend to use
dysarthric speech as input and its healthy control counterpart
as the target speech, since the objective is for the TDNN-
DAE network to learn the mapping between the two. Typically
dysarthric speech is slower than healthy control speech and
hence of longer duration. One mechanism to match the number
of frames is by using varying frame lengths and frame shifts for
dysarthric utterance so as to match the number of frames in the
corresponding healthy control utterance. However, the differ-
ence in the durations between dysarthric utterances and healthy
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Figure 2: Data Preparation for TDNN-DAE training for the
word ’Paragraph’- (a) Original dysarthric utterance (2.68s) (b)
Dysarthric utterance after end point silence removal (1.39s)
(c) Original healthy control utterance of duration (1.66s) (d)
Healthy Control utterance after end point silence removal
(0.91s) (e) Dysarthric utterance after tempo adaptation (0.91s)
to match (d)

control utterances was too high to achieve a meaningful frame
lengths and frame shifts.

Matching of number of frames was done using the follow-
ing two steps as depicted in Figure 2.

* Majority of silence portion at the beginning and end-
ing of both dysarthric and healthy control utterances was
eliminated retaining roughly 200 ms of silence.

¢ In order to match the durations of the input dysarthric
utterance and target healthy control utterance, the
dysarthric utterance was temporally adapted using phase
vocoder as described in [3]. Tempo adaptation is car-
ried out according to the adaptation parameter « given as
a= 3—’1 where dp is the duration of the dysarthric utter-
ance and d is the duration of healthy control utterance.
Tempo adaptation using phase vocoder based on short-
time Fourier transform (STFT) ensures that the pitch of
the sonorant regions of dysarthric speech is unaffected
[24]. Magnitude spectrum and phase of the STFT are
either interpolated or decimated based on the adaptation
parameter (av), where the magnitude spectrum is directly
used from the input magnitude spectrum and phase val-
ues are chosen to ensure continuity. This ensures that
the pitch of the time-warped sonorant region is intact.
For the frequency band at frequency f and frames 4 and
j > i in the modified spectrogram, the phase © is pre-
dicted as

f _@of P
©; =6; +2nf-(i—J) M
The modified magnitude and phase spectrum are then
converted into a time-domain signal using inverse
Fourier transform.

Figure 3 shows the proposed methodology for a TDNN-
DAE based dysarthric speech feature enhancement and recog-
nition.
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Figure 3: TDNN-DAE based dysarthric speech feature enhance-
ment and recognition.

3. Experimental Setup

TDNN-DAE as well as DNN-HMM based ASR were imple-
mented using Kaldi speech recognition toolkit [25].

3.1. Dysarthric Speech Corpus

Data from Universal Access (UA) speech corpus [20] was used
for training the TDNN-DAE and DNN-HMM based ASR sys-
tems. UA dysarthric speech corpus comprises data from 13
healthy control (HC) speakers and 15 dysarthric (DYS) speak-
ers with cerebral palsy. Data was collected in three separate ses-
sions for each speaker and categorized into three blocks B1, B2
and B3. In each block a speaker recorded 455 distinct words and
a total of 765 isolated words. The corpus also includes speech
intelligibility rating for each dysarthric speaker, as assessed by
five naive listeners.

3.2. TDNN-DAE

23 dimensional Mel-frequency cepstral coefficients (MFCC)
were used as input features for all the experiments. TDNN-DAE
architecture described in [23] was followed. Contexts for the
DAE network with 4 hidden layers is organized as (-2,-1,0,1,2)
(-1,2) (-3,3) (-7,2) (0) which is asymmetric in nature. Input tem-
poral context for the network is set to [-13,9]. It can be observed
that narrow context is selected for initial hidden layers whereas
higher contexts for deeper layers. Each hidden layer comprises
1024 ReLU activation nodes. TDNN-DAE was trained using
training data described in Section 3.1.

3.2.1. Training data

In this work, we use 19 computer command (CC) words from
blocks B1 and B3 of dysarthric speech and of healthy con-
trol speech for TDNN-DAE training. Each dysarthric utter-
ance was temporally adapted with each of its corresponding
healthy control utterance. For example the dysarthric utter-
ance FO5_B1_C12_M2.wav (spoken by speaker FO5 recorded
as block Bl on channel M2) corresponding to CC word
C12:Sentence, was temporally adapted to match the duration of
each of the healthy control utterance corresponding to the CC
word C12:Sentence. Thus generating multiple dysarthric utter-
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ances from one single dysarthric utterance as shown in Equation
given below.

Du;j = f(Du,j,Vr,, Hu,)
where u; — CC utterances with¢ =1---19
D.,,; — dysarthric utterance where j = 1---3511
H.,; — healthy control CC utterances withi = 1---19
f — temporal adaptation(TA) function [4]

A total of 3511 dysarthric utterances were temporally
adapted against their healthy control counterparts generating
around 0.6 million temporally adapted dysarthric utterances.
The TDNN-DAE was trained using the temporally adapted
dysarthric speech utterances as input speech while their cor-
responding healthy control utterances comprised the target
speech.

(@3

3.2.2. Testing data

TDNN-DAE trained as above was used to enhance the
dysarthric speech features corresponding to 1791 utterances
i.e. computer command words from block B2. These utter-
ances were first temporally adapted followed by enhancement
of the corresponding MFCC features using TDNN-DAE. These
enhanced speech features for dysarthric speech were used to
evaluate ASR recognition performance.

3.3. DNN-HMM based ASR

Dysarthric speech was recognized using the same configuration
of DNN-HMM as in our previous work [21]. A maximum like-
lihood estimation (MLE) training approach with 100 senones
and 8 Gaussian mixtures was adopted. Cepstral mean and vari-
ance normalization (CMVN) was followed by dimensionality
reduction using Linear Discriminant Analysis (LDA) with a
context of 6 frames (3 left and 3 right) to give a feature vec-
tor of size 40. The input layer of DNN has 360 (40 x 9 frames)
dimensions. Two hidden layers with 512 nodes in each layer
and an output layer of dimension 96 were used. A constrained
Language Model (LM), wherein we restrict the recognizer to
give one word as output per utterance was used.

Healthy control (HC) and dysarthric (DYS) speech utter-
ances from blocks B1 and B3 of computer command (CC)
words were used for training the DNN-HMM based ASR as
shown in Table 1. Training configuration S-1 comprises only
healthy control (HC) speech. In the second training configura-
tion S-2, we use dysarthric (DYS) speech from blocks B1 and
B3 in addition to HC speech. In S-3, ASR was trained using
HC speech and dysarthric speech from blocks B1 and B3 that
were enhanced using the TDNN-DAE models. Each training
configuration was evaluated using dysarthric speech features
for computer command words (DYS) from block B2. In Test-
ing configuration 1, the dysarthric speech features were tem-
porally adapted. In our earlier work [4], we show that tem-
poral adaptation of the test dysarthric speech significantly re-
duced the ASR word error rate (WER). Hence, in this paper we
use the WER corresponding to temporally adapted dysarthric
speech as baseline. In Testing configuration 2, the temporally
adapted dysarthric speech features were enhanced using the
TDNN-DAE model and then evaluated. There is no overlap
in the training and testing data.

4. Results and Analysis

DNN-HMM ASR recognition is evaluated for speaker adapta-
tion (SA) and speaker independent (SI) scenarios for the train-



Table 1: ASR Training and testing configurations

System Training Testing Testing
configuration configuration 1 configuration 2
(B1,B3) (B2) (B2)
S-1 HC Temporally Temporally adapted +
S-2 HC + DYS adapted TDNN-DAE enhanced
S-3 HC + TDNN-DAE DYS DYS
enhanced-DYS (MFCC-TA) (MFCC-TA+TDNN-DAE)

ing and test cofigurations mentioned in Table 1. Word error
rates produced for the above scenarios are reported in Table
2. System S-1 does not use any dysarthric speech data for
ASR training. An absolute improvement of 13% was observed
when the test dysarthric speech data was enhanced using the
TDNN-DAE. This indicates that the TDNN-DAE based en-
hancement of dysarthric speech features results in these fea-
tures being closely matched to healthy control speech features.
Also, the drastic reduction in the ASR performance for S-2
for TDNN-DAE enhanced data, specifically in the SA scenario
serves as additional confirmation that the enhanced dysarthric
speech features match more closely to healthy control than to
dysarthric speech data. Training configuration S-3 comprises
healthy control and TDNN-DAE enhanced dysarthric data (B1
and B3). Speaker adaptation based ASR performance is higher
by 3% for TDNN-DAE enhanced dysarthric speech (B2) than
SA recognition performance for S-2. Both S-2 and S-3 contain
the same amount of healthy control and dysarthric speech data
in the training process, except that the dysarthric speech used in
S-3 is enhanced using TDNN-DAE. ASR performance for the
three different training configurations clearly indicates that us-
ing TDNN-DAE to enhance dysarthric speech features results
in dysarthric speech features matching closely to healthy con-
trol speech.

Table 2: WER for TDNN-DAE

Training Testing Testing
configuration | configuration 1 | configuration 2
SA SI SA SI
S-1 - 37.86 - 24.73
S-2 21.44 | 33.67 | 60.8 29.7
S-3 82.69 | 72.47 | 18.54 | 34.39

An analysis of ASR performance at dysarthria severity lev-
els was done for the two configurations that provide the best
recognition, namely S-2-SA using unenhanced dysarthric train-
ing and test data and S-3-SA using enhanced dysarthric training
and test data. An improvement was seen across all Dysarthria
severity levels.

Table 3: Severity level analysis of WER

Severity S-2-SA S-3-SA Absolute
Testing Testing Improvement
configuration 1 | configuration 2
Very Low 5.71 1.35 4.4
Low 11.39 9.4 1.99
Medium 22.67 19.46 3.2
High 57 52.5 4.5

5. Conclusion

In this paper we explain the process of enhancing dysarthric
speech features using a TDNN-DAE. The objective is to en-
hance the dysarthric speech features to match that of healthy
control speech. TDNN-DAE is trained using temporally
adapted dysarthric speech as input and healthy control speech
as target speech. The training process and the data used for
TDNN-DAE need careful consideration to obtain optimal ASR
performance. The dysarthric speech thus enhanced is recog-
nized using a DNN-HMM based Automatic Speech Recogni-
tion (ASR). Speaker independent and speaker adaptation based
ASR configurations were evaluated using both unenhanced and
enhanced dysarthric. An absolute improvement of 13% and
3% was observed in ASR performance for SI and SA config-
urations respectively when enhanced dysarthric speech features
were used. ASR performance for each of the training and test-
ing configurations confirm that the dysarthric speech enhanced
using TDNN-DAE is matched more closely to healthy speech
than to dysarthric speech for the same speaker. An analysis of
the two best performing configurations clearly indicate that the
ASR performance significantly improves at all severity levels of
dysarthria.
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