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Abstract
Dysarthria refers to a speech disorder caused by trauma to the
brain areas concerned with motor aspects of speech giving rise
to effortful, slow, slurred or prosodically abnormal speech. Tra-
ditional Automatic Speech Recognizers (ASR) perform poorly
on dysarthric speech recognition tasks, owing mostly to insuf-
ficient dysarthric speech data. Speaker related challenges com-
plicates data collection process for dysarthric speech. In this
paper, we explore data augmentation using temporal and speed
modifications to healthy speech to simulate dysarthric speech.
DNN-HMM based Automatic Speech Recognition (ASR) and
Random Forest based classification were used for evaluation of
the proposed method. Dysarthric speech, generated syntheti-
cally, is classified for severity level using a Random Forest clas-
sifier that is trained on actual dysarthric speech. ASR trained
on healthy speech, augmented with simulated dysarthric speech
is evaluated for dysarthric speech recognition. All evaluations
were carried out using Universal Access dysarthric speech cor-
pus. An absolute improvement of 4.24% and 2% WAS achieved
using tempo based and speed based data augmentation respec-
tively as compared to ASR performance using healthy speech
alone for training.
Index Terms: Dysarthric speech recognition, Data augmenta-
tion, Dysarthria severity

1. Introduction
Dysarthria is a speech disorder resulting from disruption in the
execution of speech movements due to neuromuscular distur-
bances to muscle tone, reflexes, and kinematic aspects of move-
ment. It could be either acquired or developmental. Dysarthric
speech is characterized by being slow, slurred, harsh or quiet,
or uneven depending on the type of dysarthria. Speech enabled
interfaces are gaining popularity, especially in the assisted and
smart living domains. Also, speech is a convenient alternative
to other machine interfaces such as remote controls, keyboards,
or PC mice given that persons with dysarthria are often faced
with physical inabilities as well [1]. While traditional, off-the-
shelf Automatic Speech Recognition (ASR) systems perform
well for normal speech, this is not the case with the atypical
dysarthric speech owing to the inter-speaker and intra-speaker
inconsistencies in the acoustic space as well as the sparseness of
data. Several techniques are employed to improve ASR perfor-
mance for dysarthric speech: acoustic space enhancement, fea-
ture engineering, Deep Neural Networks (DNN), speaker adap-
tation, lexical model adaptation- individually or as a combina-
tion thereof [2, 3, 4, 5, 6]. In order to exploit the machine learn-
ing techniques for ASR fully, suitable data to build these sys-
tems is imperative. However, owing to speaker muscle weak-
ness and fatigue, collection of dysarthric data is tedious, espe-
cially for speakers with severe dysarthria. Additionally, since
dysarthria can stem from a variety of neurological disorders, the
characterization of dysarthric speech is complex, this makes the
designing of a data collection process difficult. Thus far, three

popular dysarthric speech databases, namely Universal Access
(UA) speech corpus [7], Nemours [8] and TORGO [9] exist for
American English. Two French corpora, namely the CCM cor-
pus collected by Dr Claude Chevrie-Muller and her team and
the Aix-Neurology-Hospital corpus (ANH) have been described
in [10]. Authors describe a Dutch dysarthric speech database
containing mildly to moderately dysarthric speech from patients
with Parkinson’s disease, traumatic brain injury and cerebrovas-
cular accident [11]. A Korean dysarthric speech corpus was
built as a part of the Quality-of-Life technology (QoLT) project
that focuses on the development of speech technologies for peo-
ple with articulation disabilities [12]. A Cantonese corpus with
a focus on investigation of articulatory and prosodic charac-
teristics of Cantonese dysarthric speech is discussed in [13].
German [14], Spanish [15] and Czech [16] corpora were col-
lected with the intent of studying dysarthric speech in patients
suffering from Parkinson’s disease. While most of the cor-
pora comprise of data collected under clinical settings, [17] de-
scribes the homeService corpus, a British English corpus of re-
alistic dysarthric data collected in the home environment. Each
of the above databases were designed for a specific purpose
with a broad perspective of improving the life of people with
dysarthria. However, the amount of data is substantially lower
than a speech corpus of normal speech used in training the state-
of-the-art ASR systems, that use machine learning. To over-
come this issue of unavailability of suitable speech data, we
adopt data augmentation techniques.

Data augmentation is the process by which we create new
synthetic training samples by adding small perturbations on our
initial training set. The objective is to make model invari-
ant to perturbations and enhance its ability to generalize. In
[18] audio speed was modified using three speed factors and
the effectiveness was reported for large vocabulary continuous
speech recognition (LVCSR). Different audio data augmenta-
tion techniques such as time stretching, pitch shifting, dynamic
range compression and mixing with background noise was
used for environmental sound classification in a Convolutional
Neural Network (CNN) based architecture to significantly im-
prove the classification accuracy [19]. Data augmentation tech-
niques have been used to improve classification tasks such as
real life sound classification [20, 21]. In [22] Alzheimers dis-
ease (AD) data was augmented using two normative data sets,
through minority class oversampling with Adaptive Synthetic
sampling (ADASYN), wherein the proposed technique outper-
formed state-of-the-art results in the binary classification of
speech with and without AD.

In this paper we explore how an understanding of the
deficits in speech production caused by dysarthria may be used
to augment existing data. We present an analysis of phone du-
rations in dysarthric data with bearing on dysarthria severity
level. Based on this information, we proceed with data augmen-
tation using temporal and speed modifications to healthy speech
to generate synthetic speech that matches the characteristics of
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dysarthric speech. Further, we classify this synthetic dysarthric
speech into four severity levels using Random Forest classifier
that is trained on actual dysarthric speech, so as to validate our
understanding of the impact of these modifications to healthy
speech and how it simulates dysarthric speech. A DNN-HMM
based Automatic Speech Recognition (ASR) is trained using
healthy speech augmented with simulated dysarthric speech.
This ASR system is evaluated for dysarthric speech recognition
using Universal Access (UA) dysarthric speech corpus.

The rest of the paper is organized as follows. Section 2
presents an analysis of phone durations in dysarthric speech and
motivates the data augmentation process, and discusses the aug-
mentation techniques used, Section 3 describes the experimen-
tal setup, In Section 4 we present the results and analysis and
we conclude in Section 5.

2. Methodology
2.1. Phoneme duration analysis

In order to modify healthy control speech to emulate dysarthric
speech characteristics, we need to first understand the dysarthric
speech itself. In our earlier work [23], we modified the tempo of
dysarthric speech based on severity to improve the ASR recog-
nition. It was observed that the sonorant regions of dysarthric
speech are of longer durations as compared to that of healthy
speech. In this work, we further examine the relationship be-
tween phone durations of dysarthric speech and the dysarthria
severity levels. UA Speech corpus comprises dysarthric speech
of 4 severity levels, namely S1, S2, S3, S4 in the increasing or-
der of severity. A total of 3534 utterances of dysarthric speech
corresponding computer command words were force-aligned
at phone level using Sphinx3 toolkit [24], using Voxforge En-
glish acoustic models trained on approximately 35 hours of
speech data [25]. The alignment was then manually inspected
and corrected for extraction of phone duration. Similar exer-
cise was carried out on TORGO dysarthric speech corpus [9].
TORGO dysarthric speech corpus comprises dysarthric speech
of 3 severity levels, namely S1, S2 and S3. A more accurate
representation of the relationship between phone durations and
severity can be seen for this corpus since it comprises manual
annotation of utterances at phone level. We observed that, there
is a strong correlation between dysarthria severity and the av-
erage duration of a phone. as shown in Figure 1. It was found
that average of phone duration is proportional to the severity
of dysarthric speech, the higher the severity, longer the phone
duration.

Based on this analysis we modify the phone durations of
healthy control speech to generate synthetic dysarthric speech
data. We use this modified speech along with the healthy control
speech to augment the ASR training data.

2.2. Synthetic dysarthric data generation

Healthy control speech was modified using two different time
domain perturbations, namely (1) Time (Speed) perturbation
and (2) Tempo perturbation. Rubberband – an audio time-
stretching and pitch-shifting utility program was used for this
purpose and is described below [26]. Healthy control speech
modified in this manner amounts to synthetically generated
dysarthric speech data. To the best of our knowledge data aug-
mentation in the context of dysarthric speech recognition has
not been reported in literature previously.

2.2.1. Time (Speed) perturbation based data augmentation

Speed perturbation is achieved by re-sampling the input signal
by a factor R1. If R1 < 1, signal duration is increased and for
R1 > 1, signal duration is reduced. In this work we use differ-
ent values of R1 as R1 ∈ {1.2, 1.4, 1.6, 1.8, 2.0, 2.2} to modify
the durations of healthy control speech. Below command will
stretch the given input signal duration to R1 times original du-
ration in the Rubberband toolkit.

rubberband -t R1 <infile.wav> <outfile.wav>

2.2.2. Tempo perturbation based data augmentation

The tempo of the signal is modified by factor R2 while ensuring
that the pitch and spectral envelope of the signal do not change.
If R2 > 1, signal duration reduces and R2 < 1 signal duration
increases, making the healthy control speech slower. In this
work we use R2 as R2 ∈ {0.4, 0.6, 0.8} to modify the healthy
control speech. Below command will modify the given input
signal duration to R2 times original duration.

rubberband -T R2 <infile.wav> <outfile.wav>

The parameters R1 and R2 were selected empirically based
on the severity classification provided by the Random Forest
classifier for various values of R1 and R2 as discussed in Sec-
tion 3.2.

3. Experimental setup
3.1. Database

Data from Universal Access (UA) speech corpus [7] was used
for both training and testing. UA speech corpus comprises data
from 13 healthy control (HC) speakers and 15 dysarthric (DYS)
speakers with cerebral palsy. The recording material consisted
of 455 distinct words with 10 digits, 26 international radio al-
phabets, 19 computer commands, 100 common words and 300
uncommon words that were distributed into three blocks. Audio
data was recorded using a 7-channel microphone array, fitted to
the top of a computer monitor. Speech intelligibility ratings
for each dysarthric speaker, as assessed by five naive listeners is
also included in the corpus. Speakers were divided into four dif-
ferent categories based on the intelligibility. We use this infor-
mation to analyze the performance of our recognition systems
at different dysarthria severity level. In this paper we have used
19 computer command words from 13 healthy control (HC-CC)
and 15 dysarthric (DYS-CC) speakers.

Long silence regions at the start and end of both the healthy
control (HC) data used for training and dysarthric speech (DYS)
used for testing of the ASR are trimmed using energy based
method using PRAAT tool [27]. Initial experiments were con-
ducted to understand the effect of silence removal at the start
and end of the HC and DYS speech. Traditional DNN- HMM
based system using standard MFCC features as discussed in
Section 3.3. Table 1 shows the ASR performance in terms of
word error rate (WER) for training and test data with and with-
out silence pre-processing. An absolute improvement of 15%
(48.47% to 33.11%) was achieved by using fMLLR transform,
further improvement of 4% (33.11% to 29.06%) was achieved
using silence pre-processing. We use the best WER, wherein
both training and test data were pre-processed with fMLLR-
based ASR configuration as baseline for reporting our current
work.
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Figure 1: (a) Average phone duration (ms) for UA dysarthric speech Corpus (b) Average phone duration (ms) for TORGO dysarthric
speech corpus

Table 1: Effect of data Pre-processing on WER

Training Testing WER
Total 3458 utt Total 3534 utt w/o fMLLR with fMLLR

HC-CC DYS-CC 48.47 33.11
SIL trimmed HC-CC SIL trimmed DYS-CC 37.32 29.06

3.2. Dysarthria severity classification on augmented data

Validity of using the synthetically generated dysarthric speech
to augment the ASR training data for dysarthric speech recogni-
tion needs to be ascertained. Synthetically generated dysarthric
speech is automatically classified using Random Forest classi-
fier trained on actual dysarthric speech. Classifier was trained
using the feature set suggested by Intespeech 2009 emotion
challenge, extracted using openSMILE toolkit [28]. A total of
3534 dysarthric utterances were used for training the classifier
using 5 fold cross validation using WEKA toolkit [29]. An ac-
curacy of 96% was achieved for dysarthric speech classification
into 4 classes, based on the intelligibility score provided in the
UA Speech corpus. A total of 3458 healthy control (HC) utter-
ances modified using various tempo and speed perturbation pa-
rameters described in Section 2 were classified using this frame-
work into 4 severity classes.

3.3. DNN-HMM based ASR framework

Kaldi toolkit [30] was used for DNN-HMM based dysarthric
speech recognition. GMM-HMM system was trained using a
maximum likelihood estimation (MLE) training approach along
with 100 senones and 8 Gaussian mixtures. Cepstral mean and
variance normalization (CMVN) was applied on 23 dimension
MFCC features. Dimensionality reduction was done using Lin-
ear Discriminant Analysis (LDA), wherein LDA builds HMM
states using feature vectors with a reduced feature space. We
use a context of 6 frames (3 left and 3 right) to compute LDA.
The feature vector size post LDA is set to 40.

The input layer of DNN has 360 (40×9 frames) dimensions
using a left and right context of 4 frames. The output layer has a
dimension of 96 (number of senones available in the data). Two
hidden layers with 512 nodes in each layer were used. Feature-
space Maximum Likelihood Linear Regression (fMLLR) trans-
formed features are used as input to the DNN training, making

it a feature normalization technique. In decoding process we
use configurations with and without fMLLR transformed fea-
tures as a input [31]. DNN training was carried out using 15
epochs for all experiments. Dysarthric speech recognition was
carried out using a constrained Language Model (LM), wherein
we restrict the recognizer to give one word as output per utter-
ance.Performance of each of the recognition systems is reported
in terms of word error rate (WER).

Training configurations for the DNN-HMM based ASR is
as shown in Table 2. A total of 3534 dysarthric speech ut-
terances corresponding to 19 computer command words from
blocks B1 and B3 have been used for testing purpose.

Table 2: Training data for different systems

Training Info Total no.utterances
Set

A No augmentation 3458

B Time stretching 24206
R1 ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2}

C Tempo stretching 13832
R2 ∈ {0.4, 0.6, 0.8, 1.0}

4. Experimental Results and Analysis
Synthetically generated dysarthric speech was classified into 4
classes as discussed in Section 3. Table 3 shows the classifica-
tion of 3458 healthy control utterances modified into dysarthric
utterances using various augmentation parameters. Syntheti-
cally generated dysarthric speech is classified into 4 classes,
namely S1, S2, S3 and S4 in increasing order of severity. It can
be seen for both speed and tempo modifications that the syn-
thetically generated dysarthric utterance classification is closely
correlated to the duration of the utterance. Table 4 shows the
performance of the ASR for training configurations mentioned
in Table 2, examined at individual severity level.

Tempo based and speed based augmentation techniques
give an absolute improvement of 4.24% and 2% respectively.
Higher improvement was observed for higher severity (S4), ap-
proximately 3% and 12% absolute improvement over baseline
for systems speed and tempo augmentation respectively. Table
5 shows the effects of each data augmentation parameter on 4
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Table 3: Severity classification of synthetically generated
dysarthric data - %Accuracy

Classifier Augmentation S1 S2 S3 S4
System parameter

A None 93.97 4.29 1.74 0.00

B1 R1 = 1.2 88.35 8.00 3.30 0.35
B2 R1 = 1.4 81.05 12.51 4.98 1.45
B3 R1 = 1.6 65.24 21.55 9.79 3.42
B4 R1 = 1.8 46.87 33.43 14.83 4.87
B5 R1 = 2.0 33.72 39.86 21.15 5.27

C1 R2 = 0.4 4.06 39.98 38.18 17.79
C2 R2 = 0.6 59.62 23.99 12.05 4.35
C3 R2 = 0.8 86.96 8.98 3.48 0.58

different severity levels. It can be seen that the proposed method
gives improvement at all severity levels.

Table 4: Severity wise WER for testing data

Training S1 S2 S3 S4 Overall WER
Set

A 1.05 17.89 44.73 78.51 29.06
B 0.98 19.73 36.44 75.43 27.05
C 1.28 15.52 37.36 66.96 24.82

In order to attribute the improvement in the ASR perfor-
mance to the synthetically generated dysarthric speech data,
we look into the ASR performance for data augmentation pa-
rameters R1 and R2 separately. 8 separate ASR systems were
trained as seen in Table 5, each with 3458 synthetically gener-
ated dysarthric utterances. Table 5 shows the effect of individ-
ual augmentation parameters on ASR performance. No healthy
control data was used in the training of the ASR. Correlation
between the ASR performance for actual dysarthric speech and
the durations of the synthetic dysarthric speech data is seen for
both speed and tempo perturbations. From Table 5 and Table 3,
it is seen that increasing the phone durations using augmenta-
tion, degrades the ASR performance for low severity dysarthric
speech (S1 and S2).

Table 5: Effect of data augmentation on WER for individual
severity level

Training Augementation S1 S2 S3 S4 Overall
Set parameter WER

A None 1.05 17.89 44.74 78.51 29.06

B1 R1=1.2 0.98 17.63 42.11 72.95 27.33
B2 R1=1.4 0.90 18.82 38.42 73.68 26.91
B3 R1=1.6 1.35 21.32 36.45 69.30 26.34
B4 R1=1.8 1.20 22.63 37.76 67.25 26.46
B5 R1=2.0 1.58 21.18 34.87 69.01 26.00

C1 R2=0.4 2.33 18.95 39.87 70.47 27.16
C2 R2=0.6 1.05 20.79 37.37 77.34 27.87
C3 R2=0.8 0.75 18.55 34.61 74.56 26.15

Based on the ASR performance for synthetically generated
dysarthric data, optimal values of augmentation parameters R1
and R2 to generate dysarthric data of different severity levels is
as shown in Table 6.

Table 6: R1 and R2 recommendation for optimal ASR recogni-
tion

Severity R1 R2

S1 1.4 0.8
S2 1.2 0.8
S3 2 0.4
S4 1.8 0.4

5. Conclusions
Given that speech is an attractive interface to control the de-
vices used in assisted living and smart homes, it is imperative
that we look into improving the ASR performance for patho-
logical speech. Due to lack of suitable data to train the ASRs,
machine learning techniques are not fully exploited for patho-
logical speech recognition. In this paper, we address the data
challenge for dysarthric speech using data augmentation to syn-
thetically generate dysarthric speech data using healthy control
speech. An understanding of the deficits in speech production
caused by speech pathology has been used to augment existing
data using speed and tempo modifications to the healthy control
speech. A DNN-HMM based Automatic Speech Recognition
(ASR) system and Random Forest based classification system
have been used for evaluation of proposed method. Syntheti-
cally generated dysarthric speech is classified into 4 different
severity levels using Random Forest classifier trained on ac-
tual dysarthric speech. ASR system trained using healthy con-
trol speech augmented using synthetically generated dysarthric
speech is evaluated for dysarthric speech utterances. All evalu-
ations were carried out on Universal Access dysarthric speech
corpus computer command words. An absolute improvement
of 15% was achieved by using fMLLR transform as compared
to our previous work [6]. Additionally, ASR peformance im-
proved by 4% using silence pre-processing. We use this WER
(29.06%) as baseline to report our current work. An absolute
improvement of 4.24% and 2% was achieved using tempo based
and speed based data augmentation system over baseline sys-
tem.
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