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Abstract
Speaker diarization is the task of determining “who speaks

when” in an audio stream. Most diarization systems rely on
statistical models to address four sub-tasks: speech activity de-
tection (SAD), speaker change detection (SCD), speech turn
clustering, and re-segmentation. First, following the recent suc-
cess of recurrent neural networks (RNN) for SAD and SCD,
we propose to address re-segmentation with Long-Short Term
Memory (LSTM) networks. Then, we propose to use affinity
propagation on top of neural speaker embeddings for speech
turn clustering, outperforming regular Hierarchical Agglomera-
tive Clustering (HAC). Finally, all these modules are combined
and jointly optimized to form a speaker diarization pipeline in
which all but the clustering step are based on RNNs. We provide
experimental results on the French Broadcast dataset ETAPE
where we reach state-of-the-art performance.
Index Terms: speaker diarization, re-segmentation, LSTM,
affinity propagation

1. Introduction
Speaker diarization is the task of determining “who speaks
when” in an audio stream that usually contains an unknown
amount of speech from an unknown number of speakers [1, 2].
While speech and speaker recognition systems have improved
enormously thanks to deep learning approaches, speaker di-
arization systems have yet to fully take advantages of these new
techniques. This may be explained by the fact that speaker di-
arization is an unsupervised classification task difficult to ad-
dress with (mostly supervised) deep learning approaches.

Speaker diarization systems are usually built as the com-
bination of four main stages. First, non-speech regions
such as silence, music and noise are removed by speech ac-
tivity detection (SAD). Next, speech regions are split into
speaker-homogeneous segments by speaker change detection
(SCD), later grouped according to the identity of the speaker
thanks to unsupervised clustering approaches. Finally, speech
turn boundaries and labels are (optionally) refined with a re-
segmentation stage.

In conventional speaker diarization systems [3, 4], GMM-
based SAD and sliding windows-based SCD are widely used.
In GMM-based SAD, GMMs for speech class and non-speech
class are used to remove non-speech regions with Viterbi de-
coding. In sliding window-based SCD, one will use two ad-
jacent sliding windows on the audio data and compute a dis-
tance between them, then decide (usually by thresholding the
distance) whether the two windows originate from the same
speaker. Gaussian divergence [5] and Bayesian Information
Criterion (BIC) [6] have been used extensively in the literature
to compute such a distance.

Since SAD and SCD can be modeled as supervised binary
classification task (speech vs. non-speech for SAD, change vs.
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Figure 1: Proposed diarization pipeline and hyper-parameters.
Modules with gray background are based on neural ap-
proaches.

non-change for SCD), we did manage to improve those two
stages using deep learning approaches. Both were addressed as
frame-wise sequence labeling tasks using bi-directional LSTM
on top of MFCC features [7, 8], leading to much better perfor-
mance than traditional methods. The first contribution of this
paper (introduced in Section 2) is to adapt this LSTM-based
sequence labeling framework to the case of unsupervised re-
segmentation stage. Traditionally, a GMM is trained for each
cluster. The audio is then re-segmented through a Viterbi decod-
ing [9]. Several alternation of clustering and re-segmentation
steps are usually performed. Post-processing segment bound-
aries using the output of a word or phone recogniser also im-
proves the overall diarization output [9].

Our second contribution concerns the clustering step and
is described in Section 3. Most work rely on variations of
Hierarchical Agglomerative Clustering (HAC) approaches [10]
and use BIC, CLR or i-vector to compute similarity between
clusters. In this paper, we propose to use affinity propaga-
tion clustering on top of neural speaker embeddings introduced
in [11, 12]. While neural speaker embeddings have been used
before with spectral clustering and K-means in [13], the authors
only deal with telephone conversation with exactly 2 speakers.
Similarly, an affinity propagation variant has been introduced
in [14] for speaker diarization but it is also supervised by the
number of speakers and relies on standard statistical models to
compute speaker similarities.

Our third and final contribution is the combination and
joint optimization of all these modules into a speaker diariza-
tion system where all but the clustering stage are based on
RNNs: LSTM-based SAD, LSTM-based SCD, LSTM-based
speaker embedding, and LSTM-based re-segmentation. The
full pipeline is depicted in Figure 1. Experiments on the ETAPE
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dataset are summarized in Section 4 and state-of-the-art results
are discussed in Section 5.

2. Sequence labeling based on LSTM
In this section, we generalize the approach used for speech ac-
tivity detection in [15] and speaker change detection in [7] and
show how it can also be applied to re-segmentation.

2.1. Principle

Let x ∈ X be a sequence of feature vectors extracted from
an audio recording (e.g. MFCC features): x = (x1, . . . , xT )
where T is the length of the sequence. Let y ∈ Y be the cor-
responding sequence of labels: y = (y1, . . . , yT ) and yi ∈
{0, . . . ,K − 1} where K is the number of classes.

The objective is to find a function g : X → Y that matches
a feature sequence x to the corresponding label sequence y. We
propose to model this function g using a stacked LSTM neu-
ral architecture (further described in Section 4.2) trained with
cross-entropy loss. Short fixed-length sub-sequences (a few sec-
onds, typically) of (otherwise longer and with variable length)
audio files are fed into the model. This allows to increase the
number of training samples and augment their variability.

At test time, audio files are processed using overlapping
sliding windows of the same length as above. For each time
step i, this results in several overlapping sequences of K-
dimensional (softmax-ed) scores, which are averaged to obtain
the final score of each class.

2.2. Initial segmentation

The initial segmentation step aims at removing non-speech re-
gions and splitting it into speaker-homogeneous segments. It is
composed of two stages: speech activity detection (SAD) and
speaker change detection (SCD).

SAD is the direct application of the above principle with
K = 2 classes: yi = 1 for speech, yi = 0 for non-speech.
At test time, the sequence of speech scores is post-processed
using two (θonset and θoffset) thresholds for the detection of the
beginning and end of speech regions [8].

SCD can also be addressed using the same principle with
K = 2 classes: yi = 1 if there is a speaker change during
the ith frame, yi = 0 otherwise. To balance the number of
positive and negative samples during training, the positive class
is increased artificially by labeling as positive every frame in
the direct neighborhood (e.g. less than 50 milliseconds apart)
of the actual change point. At test time, the sequence of speaker
change scores is post-processed so that all local maxima on a
sliding window of duration δpeak exceeding a threshold θpeak are
marked as speaker change points [7].

2.3. Re-segmentation

Given the output of the clustering step (later discussed in
Section 3), re-segmentation aims at refining speech segments
boundaries and labels and is usually solved with a combination
of GMMs cluster modeling and Viterbi decoding. Assuming
the output of the clustering step predicts k different speakers,
we propose (and this is our first contribution) to use the same
principle as above with K = k + 1 classes: yi = 0 for non-
speech and yi = k for speaker k.

At test time, using the (unsupervised) output of the clus-
tering step as its unique training file, the neural network is
trained for a (tunable) number of epochs E and applied on the
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Figure 2: Aggregation of fixed-length subsequence embeddings.

very same test file it has been trained on. The resulting se-
quence of K-dimensional scores is post-processed by choosing
the class with maximum score for each frame. To stabilize the
choice of the hyper-parameterE and make the prediction scores
smoother, scores from the m = 3 previous epochs are averaged
when doing predictions at epoch E.

While this re-segmentation step does improve the labeling
of speech regions, it also has the side effect of increasing false
alarms (i.e. non-speech regions classified as speech). Therefore,
its output is further post-processed to revert speech/non-speech
regions back to the original SAD output.

3. Clustering
In this section, we introduce our second contribution: the
combination of neural embeddings and affinity propagation for
speech turn clustering.

3.1. Neural embedding

First, a neural embedding network f : X → RD is trained
using the triplet loss paradigm to embed speech sequences x
into a D-dimensional space. The network architecture used is
the one introduced in [11] and further improved in [15]. In the
embedding space, two sequences xi and xj of the same speaker
(resp. two different speakers) are expected to be close to (resp.
far from) each other according to their angular distance:

∠(xi, xj) = arccos

(
f(xi) · f(xj)

‖f(xi)‖ · ‖f(xj‖)

)
(1)

Figure 2 depicts how this network f – initially meant to pro-
cess fixed-length (a few seconds, typically) speech sequences –
can be used to embed variable-length speech segments coming
from the initial segmentation step (A). The idea is to slide a
fixed-length window (B) over the duration of the file, embed
each of these subsequences (C), and then sum the embedding
of all overlapping subsequences to obtain one embedding per
initial segment (D). The embedding of segment i is denoted as
ωi in the next paragraph.

3.2. Clustering by Affinity propagation (AP)

The goal of SAD and SCD is to produce pure speaker segments
containing a single speaker. The clustering stage is then respon-
sible for grouping these segments based on speaker identities.
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We chose the affinity propagation (AP) algorithm [16] for clus-
tering. AP does not require a prior choice of the number of clus-
ters contrary to other clustering methods [13]. All speech seg-
ments are potential cluster centers (exemplars). Taking as input
the pair-wise similarities between all pairs of speech segments,
AP will select the exemplars and associate all other speech seg-
ments to an exemplar. In our case, the similarity between ith

and jth speech segments is the negative angular distance be-
tween their embeddings: s(i, j) = −∠(ωi, ωj)

On the diagonal of the similarity matrix, s(k, k) is set to
the preference value θAP, a hyper parameter which influences
the choice of ωk as exemplar and thus the final number of clus-
ters. AP clustering can be viewed as a “message passing” pro-
cess between speech segments with two kinds of message: re-
sponsibility and availability. Responsibility r(i, k) is a message
sent from segment i to k that quantifies how well-suited xk is
to serve as the exemplar for xi. Availability a(i, k) is a mes-
sage sent from segment k to i that represents how appropriate it
would be for segment i to pick segment k as its exemplar. Re-
sponsibilities and availabilities are first initialized to 0 and then
updated iteratively with a damping factor λAP which is intro-
duced to avoid numerical oscillations. At each iteration, AP
combines the responsibilities and availabilities to control the
selection of exemplars. For segment i, the segment k which
maximizes r(i, k) +a(i, k) is the corresponding exemplar. The
whole AP procedure terminates after a fixed number of itera-
tions or after the exemplar stay unchanged for a chosen number
of iterations. More details about AP can be found in [16]

4. Experiments
This section describes the experimental framework used in
the rest of the paper. Open-source implementations of both
the evaluation protocol and the proposed pipeline are avail-
able here: github.com/yinruiqing/diarization_
with_neural_approach

4.1. Corpora and evaluation metric

Use Dataset Hours nb. of speakers
(speech) Total Per file

train REPERE 59 (96%) 1758 9.6±6.1
dev. ETAPE TV (dev.) 4 (93%) 93 8.0±4.4
test ETAPE TV (test.) 4 (92%) 92 9.2±5.6

Table 1: Datasets statistics with mean and standard deviation
of speaker counts per file.

Table 1 summarizes the data used for running the exper-
iments. Both REPERE [17] and ETAPE TV [18] datasets
contain recording of French TV broadcast with news, debates,
and entertainment. The REPERE corpus was used for training
the neural networks used in SAD, SCD, and embeddings. The
ETAPE TV development subset was used for hyper-parameter
tuning, while the ETAPE TV test subset was used for evalua-
tion.

Speaker diarization systems are usually compared using di-
arization error rate (DER). In order to account for manual anno-
tation imprecision, it is common practice to not evaluate short
collars centered on each speech turn boundary (usually 250ms
on both sides) and speech regions with more than one simul-
taneous speaker. In the case of the ETAPE TV dataset, these
skipped regions (which are likely to be the most difficult to cor-
rectly classify) represent more than 20% of the total speech du-
ration.

Bi-LSTM MLP Output
SAD 16 × 2 16 2
SCD 32 × 2, 20 × 2 40, 10 2

Re-segm. 16 × 2, 16 × 2 16 K
Table 2: Network architectures for (re-)segmentation models.
Note: K depends on each file.

Yet, precise “who speaks when” annotations are distributed
alongside the ETAPE TV dataset. They were obtained using
the following two-steps process: automatic forced alignment of
the manual speech transcription followed by manual boundaries
adjustment by trained phoneticians. Therefore, and unless oth-
erwise stated, results reported in this paper do not use collars,
nor do they skip overlapping regions. Practically, we use the
open-source implementation of diarization error rate available
in pyannote.metrics [19].

4.2. Implementation details

Feature extraction. Each part of the diarization pipeline
shares the same set of input features extracted every 10ms on
a 25ms window using Yaafe toolkit [20]: 19 mel-frequency
cepstral coefficients (MFCC), their first and second derivatives,
and the first and second derivatives of the energy (amounting to
a total of 59 dimensions).

Sequence labeling. SAD, SCD and re-segmentation modules
share a similar network architecture which stacks Bi-LSTM and
a multi-layer perceptron. The architecture details are shown
in Table 2. For example, the model for SCD is composed by
two Bi-LSTM layers and 2 fully connected layers. Bi-LSTM1
has 64 outputs (32 forward and 32 backward). Bi-LSTM2
has 40 (20 each). The fully connected layers are 40- and
10-dimensional respectively. As described in Section 2, the
final output layer dimension depends on the task.

Sequence embedding. Implementation details are identi-
cal to the ones used in [12]. Trained on REPERE dataset,
192-dimensional embeddings are extracted every 0.8s on sub-
sequences of duration 3.2s.

4.3. Contrastive approaches

The proposed speaker diarization pipeline is compared to
two alternative approaches. The first one is a variant of the
proposed approach where the affinity propagation module is
replaced by standard hierarchical agglomerative clustering.
The second one, dubbed “S4D” in the rest of the paper, is a
state-of-the-art system developed at LIUM using sidekit [21]
and S4D [22] toolkits.

Hierarchical agglomerative clustering. This variant of the
proposed pipeline relies on complete-link clustering [23] on
top of the affinity matrix S based on angular distance defined
in Section 3 and a distance threshold θHAC to stop merging
clusters. Other linkages were tested (average, single) but found
to lead to worse performance.

S4D system outputs were provided to us by LIUM and use
the following pipeline. Segmentation based on Gaussian diver-
gence first generates (short) pure segments. Adjacent segments
from the same speaker are then fused based on the Bayesian
Information Criterion (BIC), leading to (longer) speech turns.
Hierachical clustering based on Cross-Likelihood Ratio then
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Figure 3: Performance on ETAPE TV test set. Black bars,
gray bars and white bars indicate false alarm, miss detection
and confusion respectively. Dashed lines indicate performance
when tuned on test set.

groups them into pure clusters, further grouped into larger clus-
ters using another i-vector-based clustering. Three clustering
approaches were compared for this last step: regular HAC,
graph-based clustering, and integer linear programing. Graph-
based clustering was selected as the one leading to the best per-
formance on the ETAPE TV development set. Finally, Viterbi
decoding adjusts segment boundaries. Note that the trainable
parts of this system were trained on a much larger dataset (ES-
TER [24], ETAPE [18], REPERE [17], and NIST RT03) than
the one we used (REPERE only).

4.4. Joint optimization

While speaker diarization modules are usually tuned empiri-
cally and independently from each other, our third contribution
consists in the joint global optimization of the whole diarization
pipeline. More precisely, we use the Tree-structured Parzen Es-
timator hyper-parameter optimization approach [25] available
in hyperopt toolkit [26] to automatically select the set of hyper-
parameters that minimizes diarization error rate on ETAPE TV
development set: θonset and θoffset for SAD, θpeak and δpeak for
SCD, θAP and λAP for affinity propagation (or θHAC for hier-
archical agglomerative clustering). Note that re-segmentation
hyper-parameter E was tuned separately as we wanted to care-
fully analyze its behavior, but it should ideally be optimized
with the rest of the pipeline.

5. Results and discussions
Figure 3 summarizes the main experimental results. The
proposed pipeline reaches state-of-the-art performance on the
ETAPE TV dataset, though the difference with LIUM’s S4D
is not statistically significant (24.2% vs. 24.5%). However,
switching from affinity propagation to hierarchical agglom-
erative clustering does degrade significantly the performance
(24.2% vs. 28.5%). Comparison to results obtained when tuned
directly on test set shows that there is room for improvement re-
garding the joint optimization of the proposed pipeline: LIUM’s
S4D tends to generalize better (∆DER = 1.6% vs. 0.6%).
Nevertheless, affinity propagation beats hierarchical agglomer-
ative clustering under this criterion (∆DER = 1.6% vs. 2.8%).

Table 3 shows the effect of the proposed re-segmentation
step on the output of affinity propagation clustering: it improves
both cluster purity and coverage, leading to an absolute decrease

DER Purity Coverage
Before re-segm. 25.6% 81.8% 82.1%
After re-segm. 24.2% 83.4% 82.9%

Table 3: Effect of re-segmentation on proposed pipeline
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Figure 4: Re-segmentation on development (top) and test sets
(bottom). The best epoch on the development set is marked with
an orange dot.

of 1.4% in diarization error rate. Interestingly, the same conclu-
sion holds when it is applied to the HAC-based pipeline or the
LIUM S4D, even though the latter uses its own re-segmentation
step in Figure 3.

Figure 4 is meant to analyze the behavior of the approach
and to evaluate the robustness of its unique hyper-parameter E.
The horizontal dashed line is the DER of the system before
re-segmentation (i.e. the output of the clustering step). DER
quickly decreases during the first few epochs, reaches an im-
proved minimum value, then starts to over-fit to the original in-
put and asymptotically converges to the original performance.
This observation, combined with the fact that the optimal num-
ber of epochs on the test set is close to the one selected on the
development set, leads us to the conclusion that the proposed
LSTM-based re-segmentation is stable and very unlikely to de-
grade performance.

6. Conclusion
The proposed pipeline is a step toward an integrated end-to-end
neural approach to speaker diarization. We show that both the
initial segmentation and the final re-segmentation can be formu-
lated as a set of sequence labeling problems, addressed using
recurrent neural networks. However, in re-segmentation step,
finding the best epochE relies on a development set. We plan to
investigate a way to automatically select the best epoch for each
file. In addition, though neural networks can be used to embed
and compare pairs of speech segments, it remains unclear how
to do also cluster them in a differentiable manner. Our experi-
ments also show that affinity propagation outperforms the stan-
dard agglomerative clustering with complete-link, when com-
paring speaker embeddings.
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and O. Galibert, “The ETAPE Corpus for the Evaluation of
Speech-based TV Content Processing in the French Language,” in
LREC - Eighth international conference on Language Resources
and Evaluation, Turkey, 2012, p. na. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00712591

[19] H. Bredin, “pyannote.metrics: A Toolkit for Reproducible
Evaluation, Diagnostic, and Error Analysis of Speaker Diarization
Systems,” in Interspeech 2017, 18th Annual Conference of the
International Speech Communication Association, Stockholm,
Sweden, August 2017. [Online]. Available: http://pyannote.
github.io/pyannote-metrics

[20] B. Mathieu, S. Essid, T. Fillon, J. Prado, and G. Richard,
“YAAFE, an Easy to Use and Efficient Audio Feature Extraction
Software.” in ISMIR 2010, 11th International Society for Music
Information Retrieval Conference, 2010, pp. 441–446.

[21] A. Larcher, K. A. Lee, and S. Meignier, “An Extensible Speaker
Identification Sidekit in Python,” in ICASSP 2016, IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing.
IEEE, 2016, pp. 5095–5099.

[22] P.-A. Broux, F. Desnous, A. Larcher, S. Petitrenaud, J. Carrive,
and S. Meignier, “S4D: Speaker Diarization Toolkit in Python,”
in Interspeech 2018, 19th Annual Conference of the International
Speech Communication Association, 2018.

[23] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
John Wiley & Sons, 2012.

[24] S. Galliano, E. Geoffrois, D. Mostefa, K. Choukri, J.-F. Bonastre,
and G. Gravier, “The ESTER Phase II Evaluation Campaign for
the Rich Transcription of French Broadcast News,” in Ninth Eu-
ropean Conference on Speech Communication and Technology,
2005.

[25] J. Bergstra, D. Yamins, and D. Cox, “Making A Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimen-
sions for Vision Architectures,” in International Conference on
Machine Learning, 2013, pp. 115–123.

[26] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A Python Li-
brary for Optimizing the Hyperparameters of Machine Learning
Algorithms,” in Proceedings of the 12th Python in Science Con-
ference. Citeseer, 2013, pp. 13–20.

1397


