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Abstract
This paper presents the approach developed by the BUT team
for the first DIHARD speech diarization challenge, which is
based on our Bayesian Hidden Markov Model with eigenvoice
priors system. Besides the description of the approach, we pro-
vide a brief analysis of different techniques and data process-
ing methods tested on the development set. We also introduce
a simple attempt for overlapped speech detection that we used
for attaining cleaner speaker models and reassigning overlapped
speech to multiple speakers. Finally, we present results obtained
on the evaluation set and discuss findings we made during the
development phase and with the help of the DIHARD leader-
board feedback.
Index Terms: Speaker Diarization, Variational Bayes, HMM,
i-vector, x-vector, Overlapped speech, DIHARD

1. Introduction
The efforts on speaker diarization (SD) have lately focused
mainly on meetings and conversational telephone speech. Al-
though remarkable improvements have been obtained under
these conditions, the state-of-the-art systems are still not that
successful in other domains. The aim of the 2018 DIHARD
challenge [1] was to bring attention to other corpora such as
interviews collected in both interior and exterior environments,
conversations in restaurants, child language acquisition record-
ings in family environments or web videos. These considerably
different domains imply that different approaches need to be
considered when dealing with clean and noisy speech, silence
and overlapped speech to enhance the capabilities of the SD
systems. For further information on the different domains, we
kindly refer the reader to [1].

In this paper, we mainly describe the BUT system that pro-
duced the best results on the evaluation set. However, many
other ideas were considered and analyzed during the challenge.
Some of them were the application of denoising and derever-
beration algorithms in order to enhance the audio signals, the
analysis of the level of reverberation in a per utterance manner,
different types of normalization of the signal and the use of dif-
ferent corpora with different characteristics to train the models.
We considered also the addition of a domain identification sys-
tem in order to take advantage of the best per domain settings.
For the lack of space, we present results only on a selection
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of these experiments. All these experiments are presented for
the development set as by the submission deadline of this paper
(the same as for the DIHARD challenge system submission)
the evaluation set labels were still not available. The numbers
presented for the eval set are those obtained by the challenge
leaderboard feedback.

When devising our system, we considered different aspects
as described in the following sections. They include different
corpora in addition to the DIHARD development dataset; mech-
anisms to enhance the audio signal and to obtain acoustic fea-
tures; strategies for initializing the model; a domain identifica-
tion system; an overlapped speech detector; and unsupervised
use of the evaluation data.

2. Variational Bayes diarization System

Our main approach to the diarization problem is based on a
Bayesian Hidden Markov Model (HMM) with eigenvoice pri-
ors [2]. This model assumes that the sequence of speech fea-
tures representing a conversation is generated from a HMM,
where each state represents one speaker and the transitions be-
tween the states correspond to speaker turns. The ergodic HMM
is used, where transitions from any state to any state are possi-
ble. However, the transition probabilities are set in a way that
discourages too frequent transitions between states in order to
reflect speaker turns durations of a natural conversation. The
HMM state (or speaker) specific distributions are modeled by
Gaussian Mixture Models (GMMs) with informative eigenvoice
prior imposed on the GMM parameters. Such prior, which is
essentially the same as in i-vectors [3] or Joint Factor Analysis
(JFA) [4] models, allows us to robustly estimate speaker dis-
tributions, which facilitates discrimination between the speaker
voices in the input recording. The proposed Bayesian model
offers an elegant approach to SD as a straightforward and ef-
ficient Variational Bayes (VB) inference in a single probabilis-
tic model addresses the complete SD problem: For each input
conversation, we construct a HMM with preferably more states
than what is the assumed number of speakers in the conversa-
tion and we start with some initial (possibly random) assign-
ment of frames to HMM states. Then, each VB training iter-
ation refines the HMM state specific distributions and recalcu-
lates the soft (probabilistic) assignment of frames to the HMM
states. During the VB training, the complexity control inher-
ent in the Bayesian learning automatically drops the redundant
HMM states (i.e. learns zero transition probabilities into such
states) and decides on the number of speakers in the conversa-
tion. The final assignment of frames to the “surviving” HMM
states gives the solution to the diarization problem. An open
source code for the algorithm is provided in [5] and more de-
tails on the algorithm can be found in [2]. In the rest of this
paper, we will refer to this approach as VB diarization.
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2.1. Baseline initialization of the algorithm

The VB diarization system can be initialized setting an upper
bound on the number of speakers for the input utterance and us-
ing a random assignment of frames to speakers. Also, it can be
initialized using a labeling attained with an external diarization
algorithm.

For all the experiments presented in section 3 we initialize
the VB diarization using the output from the diarization system
described in [6], which works as follows: each utterance is seg-
mented into 2 second speech segments, overlapped by 0.5 sec-
onds. 64 dimensional i-vectors [3] are extracted from each seg-
ment and projected by means of Principal Component Analysis
to 3 dimensions [7]. These segments are then clustered using
Agglomerative Hierarchical Clustering (AHC) using calibrated
Probabilistic Linear Discriminant Analysis (PLDA) similarity
scores [8, 9].

3. Experimental Set Up
3.1. Data resources

To evaluate the performance of our approach on the develop-
ment set, we prepared two independent training sets, and two
corresponding evaluation strategies. The first set (Tel) consists
of 8 kHz (mostly telephone) data from NIST SRE 2004 - 2008
datasets, which amounts to around 1400h of speech. When us-
ing Tel set to train our systems, we evaluated them on the whole
development set. To build the second set (devPart), we parti-
tioned the DIHARD development set [10, 11] into two speaker-
disjoint subsets with balanced number of utterances across all
domain. The domains that could not be partitioned with this
criteria (SCOTUS and SLX) were assigned each to one of the
partitions. To evaluate the systems trained using devPart, we
trained on one partition and evaluated on the other, and vice-
versa. We report the pooled results from both partitions.

Several attempts were made to extend both Tel and devPart
training sets. The training sets were augmented with various
combinations and proportions of data from librispeech [12],
VoxCeleb [13], NIST SRE08 interviews, AMI [14] and Van-
Dam [15], but the results obtained on the development set were
always worse than when training the systems only with the
training sets Tel or devPart.

For the alternative initializations mentioned in section 4, the
x-vector extractor was trained on data from NIST SRE 2004-
2008, Fisher English and Switchboard.

3.2. Voice Activity Detection (VAD)

For the Track 2 of the challenge, in which no golden segmenta-
tion labels were provided, a VAD system was used in order to
discard silence and feed the rest of the system only with speech
segments. Moreover, for the Track 1, we explored using the
VAD output together with the golden segmentation labels in or-
der to discard even more silence when training the systems on
DIHARD development data. However, while the results im-
proved for some domains, they deteriorated for others produc-
ing similar results overall.

Our VAD is based on a neural network (NN) trained for bi-
nary, speech/non-speech, classification of speech frames. The
288-dimensional NN input is derived from 31 frames of 15 log
Mel filter-bank outputs and 3 pitch features. The NN with 2
hidden layers of 400 sigmoid neurons was trained on the Fisher
English with labels provided from Automatic Speech Recogni-
tion alignment. Per-frame logit posterior probabilities of speech

were smoothed by averaging over consecutive 31 frames and
thresholded to at the value of 0 to give the final hard per frame
speech/ non-speech decision. See [16] for more detailed de-
scription of the VAD system.

For the Tel system training, using a more aggressive VAD
gave better results. The VAD is based on the BUT Czech
phoneme recognizer [17], dropping all frames that are labeled
as silence or noise. The recognizer was trained on the Czech
CTS data, but we have added noise with varying Signal to Noise
Ratio (SNR) to 30% of the database.

3.3. Features

Several efforts were made exploring the best set of features. Our
baseline feature set are htk-based Mel Frequency Cepstral Co-
efficients (MFCC), with 19 coefficients plus Energy extracted
from 8kHz audios. Cepstral Mean and Variance Normalization
(CMVN) methods had proven to be harmful for diarization, as
they remove channel information that could be useful to identify
speakers in certain scenarios. Still, given the variety of domains
for the DIHARD dataset, we decided to revisit the different fea-
ture extraction methods. Also, features extracted from 16kHz
data were tested. We highlight the most significant findings.

System Tel devPart
No normalization 29.75 26.34
floating CMVN 25.28 28.25
Per-utterance CM 26.41 27.02
16KHz – 27.91
16KHz+deltas – 27.78

Table 1: %DER on the DIHARD development set

In Table 1 we present results for different feature extraction
methods. We can observe that for the system trained on tele-
phone data, floating window CMVN and per-utterance Cepstral
Mean substraction enhance performance, whereas they hurt for
the system trained on the dev set. Extracting features from
16kHz does not provide any gains on the development set.

3.4. Data Processing

Denoising We used a NN autoencoder [18] which consists of
three hidden layers with 1500 neurons in each layer. The input
of the autoencoder is a central frame of a log-magnitude spec-
trum with a context of +/- 15 frames (in total 3999-dimensional
input). The output is a 129-dimensional enhanced central frame.
We used Mean Square Error (MSE) as objective function dur-
ing training. The Fisher English database parts 1 and 2, ap-
proximately 1800 hours of audio, were used to train the au-
toencoder. The datasets were artificially corrupted with addi-
tive and convolutive noise at SNR level 0-21dB from Freesound
library [19] and room impulse responses were taken from
AIR [20], C4DM [21, 22], MARDY [23], OPENAIR [24], RVB
2014 [25], and RWCP [26].
Dereverberation We used the Weighted Prediction Error
(WPE) [27] method to remove late reverberation from the data.
We estimated a dereverberation filter on Short Time Fourier
Transform (STFT) spectrum for every 100 second block of an
utterance. To compute the STFT, we used 32ms windows with
8ms shift. We set the filter length and prediction delay to 20
and 3 respectively for 16 kHz, and 10 and 2 respectively for
8 kHz data. The number of iterations was set to 3.

Results in Table 2 show the benefits of using denoising and
dereverberation on the development set. As it can be seen, both
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System Tel devPart
Set allDEV ADOS allDEV ADOS
Baseline 29.75 33.55 26.34 28.90
+denoising 27.33 26.60 26.65 24.02
+dervberb. 27.89 32.52 26.82 23.62

Table 2: %DER for different data processing approaches

approaches seem to foster performance when training the sys-
tems with Tel, and degrade when using devPart. Also, the im-
provements are not consistent in all domains, to illustrate this,
we show results computed only over utterances coming from
the subset corresponding to ADOS, from the development set.

4. Alternative initializations
For initialization with the i-vector-PLDA AHC approach ex-
plained in section 2.1 we experimented with several different i-
vector configurations as well as NN-based speaker embeddings.

To extract speaker embeddings, referred to as x-vectors, we
employed the architecture described in [28] (embedding A). We
trained the NN with the corresponding Kaldi recipe [29] except
that we used the data described in Section 3.1 in order to comply
with the rules of the DIHARD challenge and that we reduced
the minimum number of utterances a speaker needs to have in
order to be included in the training set from 8 to 6.

For both i-vectors and x-vectors we experimented with sev-
eral different post-processing methods. The configuration that
finally gave the best performance was x-vectors, projected to
150 dimensions by LDA with no length normalization, and with
mean over the PLDA training set subtracted. It is worth noting
that, although this system provided the best initialization for
the VB diarization system in terms of final performance, it was
not the best system in terms of performance on its own. The
x-vector based initializations generally provided more speakers
which the VB diarization seems to benefit from. Results for
only two of the best performing systems using VB with i-vector
based (Baseline) and x-vector based initializations are shown in
Table 3 where we see the clear difference between the two ap-
proaches for the whole set. However, this pattern was different
depending on the domain as we can see, for example, for RT04S
and SEEDLINGS.

System Tel
Set allDEV RT04s SEEDLINGS
Baseline (ivec) 29.75 48.13 47.38
xvec 24.65 41.05 48.59

Table 3: %DER for the VB SD system using various initializa-
tions

5. Domain Identification
DIHARD development and evaluation data originate from sev-
eral different domains varying in channel conditions, number of
speakers, etc. We believed that individual adjustment of model
parameters to different domains could improve the overall per-
formance of our system. For this reason, we built a subsystem
that automatically classify evaluation recordings according to
the domains given in the dev set. At the end, we found that
the only strategy that generalized to the evaluation data was to
detect LibriVox recordings, which always contain one speaker.

To classify domains, we trained a Gaussian Linear Classi-
fier (i.e. Gaussian distributed classes with shared covariance
matrix) on 64 dimensional i-vectors extracted from the whole

recordings. The i-vector extractor was trained on the Tel dataset
with addition of the LibriSpeech dataset [12]. The classifier was
trained on the development data and 150 randomly chosen files
from previously released Librivox data [19].

6. Overlapped speech detection
Since the current diarization system outputs one speaker label
per frame, a post processing of the output was carried out. An
overlapped speech detector was trained using three corpora in
which overlaps are annotated: AMI[14] - 98h (1st microphone
from 1st microphone array), Callhome - 17h (multi-lingual sub-
set of train-sets), SRE08 test set - 186h (LDC2011S08). The
training data were selected to contain a rich mixture of lan-
guages and domains. The model is a modified version of our
VAD from section 3.2. The difference is that the NN has 3
outputs: ‘speech’, ‘non-speech’ and ‘overlapped speech’. The
per-frame score is the logit of posterior of ‘overlapped speech’
NN output. The rest is the same as for the VAD described in
3.2: fbank+pitch feature front-end, 2 hidden-layer NN topology
and averaging of logit-scores over a window of 31 frames.

The detector was applied using two thresholds: one aggres-
sive and one precise. The aggressive threshold was used to fil-
ter out any overlapped speech in order to feed the first pass of
the VB algorithm only with reliable speech frames. Then, the
precise threshold was used to detect speech segments that are
overlapped speech with high probability. In a second pass of
the VB algorithm the speaker models were kept fixed and those
frames filtered out by the aggressive threshold but not by the
precise one were assigned to speaker models. We saw that this
approach helped the most for the noisiest domains on dev data.
Then, only the frames spotted by the precise detector were given
two speaker labels in order to reduce the false alarm rate. The
frames were tagged according to the following rules:

• If the neighboring frames are assigned to different speakers,
the overlap segment is assigned to those speakers.

• If only one of the neighboring segments is assigned to a
speaker (the other to silence), or both were assigned to the
same speaker, the overlap segment is assigned to that speaker
and to the next most likely speaker according to the diariza-
tion model output.

• If both neighboring segments were silence segments, the
overlap segment was assigned to the two most likely speakers
according to the diarization model output.

System devPart
Set allDEV VAST
No Overlap handling 27.85 38.93
+ overlap cleaning 27.44 38.98
+ overlap reassignment 27.51 36.48

Table 4: %DER for overlap speech handling techniques

Table 4 shows the comparison of the two stages of the over-
lap handling. Applying the aggressive threshold allows to train
cleaner models; however, this does not imply improvements for
all domains, for example for VAST. When using the precise
threshold together with the aggressive one, the results in gen-
eral are subtlety worse because of false alarm speech that was
close to 0% before applying the overlap handling. Nevertheless,
the improvement on noisy conditions such as VAST showed us
that this option would perform better in the evaluation set since
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DEV EVAL
System ALL ADOS DCIEM LIBRIVOX RT04s SCOTUS SEEDL. SLX YP VAST ALL
Baseline 29.75 33.55 13.90 22.93* 48.13 18.47 47.38 24.77 11.92 37.65 35.85
Sys1 19.96 16.56 6.80 7.95* 35.16 12.18 30.12 21.85 3.59 34.87 25.39
Sys2 – – – – – – – – – – 25.07

Table 5: %DER for VB SD systems for development, development domains and evaluation set (as reported by the leaderboard). *Note
that Librivox domain identification is not used for reporting results on the dev set, as it was trained on the same data. Sys2 is Sys1
adapted in an unsupervised way on the eval data, therefore we only report results on the eval set.

the domains added for such set that were not in the development
set had similar characteristics.

Although processing overlapped speech provided some im-
provement on the final results, there is still a considerable mar-
gin for gains in comparison to the same strategy but using the
oracle overlap labels so this part of the model needs further in-
vestigation, see section 8 for some insights on this matter.

7. Best performing systems
Our baseline system trained on telephone data Tel, which is the
system described in our previous work [2], attains 29.75 %DER
on dev set and 35.85% DER in eval as reported by the leader-
board feedback. Results for this system are provided in Table 5
also per domain on the development set.

One of our final best performing system on eval (Sys1) re-
sulted as a combination of some of the techniques presented
above, which were not always the best performing on the de-
velopment set. We used 19 MFCC coefficients+energy+deltas
extracted from dereverberated 16kHz signals. The VB algo-
rithm was trained on the development set, excluding the VAST
data, as we found the labeling too noisy to generate reliable
speaker models. As unsupervised usage of the evaluation set
was allowed, the eval data was used for the UBM training. The
diarization system was initialized with an x-vector based PLDA
AHC system. The overlapped speech treatment described in
section 6 was applied. Files identified as LibriVox by our do-
main identification system were labeled as single speaker files.
This combination resulted in a 25.39% DER on the evaluation
set. In Table 5, we also provide results for the development
set when applying the same configuration. Note, however, that
the system applied to eval is trained using the whole dev set,
whereas the one applied to dev uses the devPart training set and
pooled evaluation.

The final best performing system on the first track of the
challenge (Sys2) was identical to the one just described, except
for one significant difference: we re-trained the eigenvoice sub-
space for the VB diarization on the pooled dev and eval data.
However, this procedure required speaker labels for the evalua-
tion data, which were not available. We obtained such labels in
an unsupervised way as follows: the evaluation data was labeled
using 5 diverse diarization systems developed for this challenge
using different features, initializations, etc. For each evaluation
recording, we clustered frames in such a way that all the systems
agreed on having only one speaker in each cluster (i.e. cluster
labels were given by concatenated speaker labels from all sys-
tems). We selected the largest cluster as training data represent-
ing one speaker, we discarded all clusters that were believed to
be the same speaker by any of the system and we continued with
the next largest cluster. This system attained 25.07% DER.

For the second track of the challenge, where part of the
problem was also to provide VAD and the use of the golden
segmentation of the eval set was not allowed, our submission
was the Sys1 system but using the VAD described in section

3.2 instead of the golden segmentation, which attained the best
results in the challenge for this track, 35.51% DER.

8. Discussion
The first DIHARD speech diarization challenge has brought for
the first time in a long time a new framework for the evaluation
of SD systems and new challenges including evaluation without
collars, inclusion of overlapped speech in the evaluation and
files from very distinct domains.

The DIHARD dataset with audios from several domains
posed a problem for system optimization. Several of the im-
provements that we would observe in the development set when
testing different training sets, feature extraction methods, data
processings, etc. would prove to be beneficial for audios coming
from a specific domain. In hopes of getting some benefit from
these findings, we attempted using automatic domain identifi-
cation on the eval set. Unfortunately our findings would often
not generalize to the evaluation set, so we mainly focused on a
single model for all domains. Once we get the evaluation data
labels, research will be done to analyze this matter, which will
reveal whether the domain identification has to be improved,
whether the amount of files in development set per domain were
not sufficient to make solid assumptions about the optimizations
or bring some other insights.

The inclusion of overlapped speech on the evaluation of the
systems had a high impact on the results: around a 9% DER
on the development set which accounts for about 40% of the
total error for our best systems. We attempted using automatic
overlapped speech detection to deal with this. When analyz-
ing the performance on the development set we observed the
unavoidable inconsistency between the labeling for overlapped
speech between the audios from different domains. Some la-
belings would ignore long segments of overlapped speech (and
silences), whereas others would mark overlapped speech with
quite a significant collar around the real audible overlapped
speech. This makes it almost impossible to make proper use of
an overlapped speech detector. Even though the use of no collar
results in a much more objective evaluation of the systems, it
remains to discuss whether the collar should not be used for the
sake of homogenizing the datasets which we need to process by
a single system.

9. Conclusions
The first DIHARD speech diarization challenge has proven to
be a highly demanding and interesting contest, providing a
dataset and framework with potential for new research lines fo-
cusing on different areas. We have presented and compared sev-
eral approaches to deal with some of the posed challenges and
discussed problems or difficulties found in the new framework.
Research will be done on the evaluation set once the labels are
released to gain insights on the real effects of the approaches
presented in the paper: data augmentation, overlap speech de-
tection, data processing and specially system fusion techniques
will be revisited.
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