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Abstract
We propose a novel semi-supervised method for end-to-end au-
tomatic speech recognition (ASR). It can exploit large unpaired
speech and text datasets, which require much less human effort
to create paired speech-to-text datasets. Our semi-supervised
method targets the extraction of an intermediate representation
between speech and text data using a shared encoder network.
Autoencoding of text data with this shared encoder improves
the feature extraction of text data as well as that of speech data
when the intermediate representations of speech and text are
similar to each other as an inter-domain feature. In other words,
by combining speech-to-text and text-to-text mappings through
the shared network, we can improve speech-to-text mapping
by learning to reconstruct the unpaired text data in a semi-
supervised end-to-end manner. We investigate how to design
suitable inter-domain loss, which minimizes the dissimilarity
between the encoded speech and text sequences, which origi-
nally belong to quite different domains. The experimental re-
sults we obtained with our proposed semi-supervised training
shows a larger character error rate reduction from 15.8% to
14.4% than a conventional language model integration on the
Wall Street Journal dataset.
Index Terms: speech recognition, semi-supervised learning,
adversarial training, encoder-decoder

1. Introduction
End-to-end automatic speech recognition (ASR) systems learn
speech-to-text mapping directly, where the speech feature is of-
ten a sequence of log Mel filterbank and the text is a sequence of
character ids [1]. Those systems have advanced many aspects
of ASR. For example, they do not need hand-crafted lexicons
or complex weighted finite state transducer (WFST)-based de-
coders [2], which are used in the conventional ASR systems [3].
Actually [4] reports that their end-to-end ASR systems can out-
perform a single human transcriber when the training dataset is
sufficiently large.

However, there still remains a major issue, which is the
preparation of a supervised dataset, namely a speech-to-text
corpora, because this requires a huge amount of human effort.
We call such a dataset as a “paired” dataset because it contains
pairs of speech and the corresponding text that is transcribed
from the speech by human. According to [5], careful transcrip-
tion costs 20 hours of human effort to create paired text for each
hour of speech. To reduce the need for such hard effort, many
researchers have developed semi-supervised training methods
for ASR systems [6]–[10] because this way we can easily ob-
tain a lot of unpaired data without such effort.

In this paper, we work on a new semi-supervised training
method for end-to-end ASR systems that can improve perfor-
mance by learning from unpaired data. The limitation of previ-

ous semi-supervised methods (e.g., restricted Boltzmann ma-
chine [6], [11] and language model integration [7], [12]) is
their inability to learn unpaired speech and text simultaneously.
Moreover, the previous methods require different aspects of hu-
man effort to build systems since they are not for end-to-end
systems but employ a large ensemble of multiple acoustic and
language models, and require careful tuning of their models. On
the other hand, our method simply exploit both unpaired speech
and text data in a fully data-driven and end-to-end manner.

Our basic framework is inspired by the recent image-to-
image or text-to-text translation methods [13]–[15] that use a
shared encoder network or a multi-task loss for unsupervised
training. We propose a new shared encoder architecture for
speech and text inputs that can encode speech and text from
their different domains or modalities into a common interme-
diate representation. The encoded features are then proceeded
by a decoder network with an attention mechanism [16] to pre-
dict text in a similar way as encoder-decoder based ASR sys-
tems. We refer to the common intermediate representation as
an “inter-domain feature”. To obtain and exploit such a fea-
ture, in the training of the encoder-decoder network, we com-
bine three loss functions: 1. speech-to-text supervised loss on a
small paired dataset that measures the negative log likelihood of
ground-truth transcription text among the predictions from the
paired speech; 2. text-to-text autoencoder [17] loss on a large
unpaired dataset that measures the negative log likelihood of
the input text; 3. inter-domain loss, which is the dissimilarity
between the encoded features of speech and text on a large un-
paired dataset. Here, we expect that the joint minimization of
these losses will improve the speech-to-text transformation by
considering text-to-text transformation via the inter-domain fea-
ture. In other words, the autoencoding of text may not only im-
prove the feature extraction of text data but also that of speech
data when we ensure the inter-domain feature to be similar to
each other by training the shared encoder with inter-domain
loss. Because of these unsupervised and supervised compo-
nents, this framework performs semi-supervised learning.

The most important parts in this framework are the shared
encoder and inter-domain loss. As the speech and text have
quite different lengths and values, our shared encoder has sub-
sampling layers to shorten the length of speech input to a length
similar to that of text, and an embedding layer to convert char-
acter ids of text input to continuous real vectors like speech.
In addition, we explore two different inter-domain losses that
can train the inter-domain feature extractor by learning from
large unpaired speech and text simultaneously. We compare
the conventional inter-domain loss using generative adversarial
network (GAN) that has been employed for text-to-text transla-
tion [15] and a newly proposed loss using Gaussian Kullback-
Leibler (KL) divergence that measures dissimilarity between
two distributions of real vectors (i.e., encoded speech and text).
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Figure 1: Network architecture used in this research.

We summarize our contributions below:

• We propose a novel end-to-end ASR method that effi-
ciently exploits both speech and text features in a semi-
supervised manner.

• Our proposed Gaussian KL divergence based inter-
domain loss is simpler and shows better performance
than the adversarial loss proposed in [13], [15].

• Our system reduced a character error rate (CER) from
15.8% to 14.4% with the small paired and the large un-
paired data in the Wall Street Journal (WSJ) dataset.

2. Semi-supervised framework
In this section, we introduce our definitions of semi-supervised
end-to-end speech recognition using an encoder-decoder.

2.1. Baseline encoder-decoder model

An encoder-decoder model consists of two parts called “en-
coder” and “decoder” networks [18]. The encoder consists
of a pyramid bidirectional long short-term memory (BLSTM)
f(·) [19] and conventional BLSTM e(·). The encoder re-
ceives an utterance consisting of a sequence of log Mel filter-
bank features x = [x1,x2, . . . ,xu], where u is the number
of frames, and transforms it to an intermediate representation
e = [e1, e2, . . . , eu′ ], where u′ is the number of sub-sampled
frames. Then, the decoder network d(·) predicts a current token
yt in a character vocabulary set Y = {‘a’, ‘b’, . . . , <EOS>}
using the encoder’s output e, the decoder’s state vector st and
the embedded vector of the previous token yt−1. We describe
this processing pipeline as follows:

e = e(f(x)), (1)
y0 = <SOS>, (2)

[Pr(yt|yt−1, e),ht] = d(yt−1,ht−1, e), (3)

where <SOS> is the start of a sequence token, and the initial
state h0 is zero. For simplicity, in the remainder of this paper,
we omit the states ht and write Eqs. (1)–(3) as a sequence form

Pr(y|e) =
|y|∏

t=1

Pr(yt|yt−1, e) = d(e), (4)

where y = [y1, y2, . . . , y|y|] is a predicted text, and |y| de-
notes the length of y. The detailed definitions of the encoder
and decoder are similar to the model proposed in [20] (i.e., the
encoder consists of six pyramid and conventional BLSTMs, and
the decoder consists of one LSTM and a location based atten-
tion mechanism). Note that, the decoder emits an <EOS> to-
ken when it predicts the end of a sequence.

Algorithm 1 Semi-supervised training algorithm.
1: unpaired speech and text datasets: S, T ,
2: paired speech-text dataset: Z .
3: hyper-parameters: α ∈ [0.5, 0.9], β ∈ [0.5, 0.9], ε = 10−8.
4: initial parameters of encoder e, decoder d, and discriminator h: Φ,Θ,Ξ.
5: procedure SEMISUPERVISEDTRAIN(Φ,Θ,Ξ)
6: for i = 1, 2, . . . ,max(#S,#T ,#Z) do
7: Si ∼ S, Ti ∼ T , . sample unpaired minibatches
8: Zi ∼ Z . sample one paired minibatch
9: if use KL then

10: Ldom(Si, Ti) = KLx∼Si,y∼Ti (e(f(x))||e(g(y)))
11: else if use GAN then
12: Ldom(Si, Ti, Ξ) =

∑
x∈Si

log h(e(f(x)))

13: +
∑

y∈Ti
log(1− h(e(g(y))))

14: ξ ← Adadeltaε(ξ,
∂Ldom
∂ξ ), ξ ∈ Ξ . update discriminator

15: else
16: Ldom = 0
17: end if
18: Ltext(Si, Ti, Θ, Φ) = − ∑

y∈Ti
log Pr(y|e(g(y)))

19: Lpair(Zi, Θ, Φ) = − ∑
(x′,y′)∈Zi

log Pr(y′|e(f(x′)))

20: L = αLpair + (1− α)(βLdom + (1− β)Ltext)

21: θ ← Adadeltaε(θ,
∂L
∂θ ), θ ∈ Θ . update encoder

22: φ← Adadeltaε(φ,
∂L
∂φ ), φ ∈ Φ . update decoder

23: end for
24: end procedure

2.2. Shared encoder-decoder model for speech and text

We extend the encoder decoder network to allow not only
speech but also text input as illustrated in Figure 1. This net-
work is a variant of the network proposed in the unsupervised
text translation approach described in [14], which consists of
one shared encoder and two decoders. The shared encoder
e(·) aims to extract the common inter-domain feature between
speech and text for learning unpaired speech and text simulta-
neously.

Compared to [14], we use only a target-side (i.e. text-side)
decoder and drop the source-side (i.e., speech-side) decider be-
cause our focus is not text-to-speech in this paper. In other
words, we simply combine speech-to-text encoder-decoder and
text-to-text autoencoder by sharing their layers. In addition, the
input layers of the encoder are different from [15] as speech
and text are different types of data. For example, speech is a
sequence of continuous vectors while text is a sequence of dis-
crete symbols. Moreover, the length of the speech is longer than
the length of the text in ASR. Hence, we use a embedding layer
g(·) for the text input to convert discrete ids of characters y
into a continuous representation g(y) while we use the pyramid
BLSTM f(·) [19] for the speech input to shorten the length as
described in the previous subsection.

We expect that such a shared model will enable the semi-
supervised learning, i.e., autoencoding of text data may not only
enhance a intermediate representation of text data but also that
of speech data when we regularize those representations to be
similar to each other during the semi-supervised training.

2.3. Semi-supervised training

We detail the training pipeline of our semi-supervised frame-
work in Algorithm 1. First, we sample one minibatch each
from unpaired speech dataset S, unpaired text dataset T , and
paired speech-to-text dataset Z . Then, we compute a training
loss for semi-supervised training that consists of the following
three terms:
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1. For paired speech and text data (x′,y′) ∈ Z , we use
the conventional speech-to-text loss Lpair, which con-
sists of a negative log likelihood of the ground-truth text
y′ given by the encoded speech e(f(x′)) as follows:

Lpair = −
∑

(x′,y′)∈Z
log Pr(y′|e(f(x′))); (5)

2. Ltext is a negative log-likelihood that the encoder-
decoder network can reconstruct text from unpaired text
dataset T like an autoencoder [17] as follows:

Ltext = −
∑

y∈T
log Pr(y|e(g(y))); (6)

Note that, it is the same loss for Eq. (5) except that the
input of decoder is the encoded text e(g(y)) here.

3. Ldom is the dissimilarity between distributions of the en-
coded speech feature e(f(x)),x ∈ S and the encoded
text feature e(g(y)),y ∈ T . We refer to this loss as an
“inter-domain loss”. We discuss its in detail in the next
section.

This multi-task loss aims to learn both the speech-to-text map-
ping and the inter-domain feature extraction between speech
and text. According to [13], [15], the minimization of the inter-
domain loss and the reconstruction loss can improve source-to-
target mapping (here speech-to-text mapping) for unsupervised
training, i.e., the minimization of the text reconstruction error
Ltext can improve the text decoding from the encoded speech
features as well as from the encoded text features when we also
minimize the inter-domain loss as a dissimilarity between those
intermediate representations during the training. Note that, the
inter-domain loss for speech-to-text plays a more difficult role
than that in image-to-image or text-to-text translation systems
in [13], [15] because the source and target domains are quite
different. Therefore, we introduce the third loss Lpair to ensure
speech-to-text mapping within a smaller paired dataset.

3. Inter-domain loss
In this section, we explore suitable definitions of the inter-
domain loss for the semi-supervised training algorithm.

3.1. Adversarial Loss

First, we adopt an adversarial loss for the inter-domain loss be-
tween speech and text because it has the ability to implicitly
model any unknown distributions through the data-driven train-
ing. This method is also known as a “generative adversarial net-
work” (GAN) [21]. The loss function requires generative and
discriminator networks to learn the dissimilarity. In our case,
the generative network is the encoder network e(·). Addition-
ally, we introduce the discriminator network h(·) that predicts
the speech domain likelihood Pr(x ∈ S) = h(e(x)) or the text
domain likelihood Pr(x ∈ T ) = 1−Pr(x ∈ S) from encoded
features for the adversarial training. We define the loss function
using those networks as follows:

LGAN =
∑

x∈Si

log h(e(f(x))) +
∑

y∈Ti

log(1− h(e(g(y)))).

(7)

Here the discriminator h(·) is trained to discriminate whether
the input is encoded speech e(f(x)) or encoded text e(g(y)),
i.e., to maximize this loss. On the other hand, the generator

e(·) is trained to “fool” the discriminator, i.e., to minimize this
loss. This min-max training aims to implicitly model the dis-
similarity and the common distribution of encoded speech and
text. Although GAN provides the flexibility as regards the dis-
similarity modeling, its training is difficult because there is a
conflict between the optimization of the generator e(·) and the
discriminator h(·). Moreover, we need to tune some configura-
tions of the discriminator network h(·).

3.2. Gaussian KL-divergence

Here we propose an alternative to the adversarial loss that does
not suffer from the tuning issue. For simplicity, we assume
that inter-domain features of speech and text follow a multi-
variate Gaussian distribution. To ensure that speech and text are
mapped to the common Gaussian distribution, we impose that
two Gaussian distributions of encoded speech and text features
become close to each other. We achieve this property by min-
imizing the KL divergence between the Gaussian distributions.
Let P andQ be the z-dimensional Gaussian distributions of en-
coded speech and encoded text, respectively as follows:

P = Normal(µP ,ΣP ), (8)
Q = Normal(µQ,ΣQ), (9)

where the statistics of Gaussian distributions are
µP = Ex∼S [e(f(x))] ,ΣP = Covx∈S [e(f(x))],
µQ = Ey∼T [e(g(y))], and ΣP = Covy∼T [e(g(y))].
The KL divergence between these distributions is defined as

LKL = 0.5

[
log

detΣP

detΣQ
+ trΣ−1

Q ΣP + a>Σ−1
Q a− z

]
,

(10)

where a = µP − µQ [22]. We compute the gradients of
this loss w.r.t. the encoder’s parameter with the standard back-
propagation. To stabilize the training, we implement the de-
terminant and its gradient in log-domain that results in much
better convergence. In experiments, training with this Gaussian
KL divergence is faster, more stable, and memory efficient than
the adversarial loss LGAN because there is no additional NN.

4. Related work
There are two well-known techniques for the semi-supervised
learning of ASR. One is a restricted Boltzmann machine
(RBM) [23]. The RBM enables pre-training with the speech
data alone before training the feed-forward neural networks
(NN) based acoustic models with the paired data [3]. The prob-
lem with this method is that it is inapplicable to recent NN vari-
ants such as the recurrent NN used in end-to-end speech recog-
nition systems [24].

The other approach is language modeling with text data
[12], [25]. This technique learns the text likelihood related to
the grammar or spelling from text dataset without human efforts
for transcribing the speech. In ASR, the “decoding” procedure
exploits both the supervised speech-to-text model and unsuper-
vised language model scores to search for the maximum likeli-
hood text. Obviously, the limitation of this language modeling
is the lack of an ability to learn the speech features in an unsu-
pervised manner.

To realize joint training on an unpaired dataset of speech
and text, we follow the recent advances in image [13] and text
translation [14], [15] that propose unsupervised training for au-
toencoder and encoder-decoder models. However, we could not
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obtain reasonable ASR results similar to those for images and
texts in our initial experiments. The reason for this difficulty
was the clear difference between source and target domains in
ASR (speech-to-text) unlike in image-to-image and text-to-text
translation. Therefore, we decided to relax the ASR problem
from unsupervised learning to semi-supervised learning.

5. Experiments
5.1. Settings

The WSJ dataset is suitable for use in examining the semi-
supervised ASR because it has a small 15-hour (7138 utter-
ances) dataset “si84” and a large 81-hour (37416 utterances)
dataset “si284” as its official training datasets. We used si84 as
a paired dataset and shuffled two independent half sets of si284
as unpaired speech and text dataset, respectively. In addition,
we used the official test dataset “dev93” for a hyper-parameter
and decoding parameter search and “eval92” for performance
evaluation. First, we trained the basic network defined in Sec-
tion 2.1 with paired si84. Then, we retrained the model with
additional embedding layer g(·) using the semi-supervised loss
with paired si84 and unpaired si284 with Algorithm 1. As seen
in [8]–[10], we observed that the retraining always results better
than training from random weights. We searched the best hyper-
parameters α, β ∈ [0.5, 0.9] on the dev93 set. As discussed
in Section 4, we also adopted a recurrent NN language model
(RNNLM) [25] as a conventional semi-supervised method for
comparison. We follow all the settings for the large dataset
si284 in the early version of ESPnet [26], which is basically
the same as [27] except for the small dataset si84 and the semi-
supervised training that we undertook for this experiment. For
training with LGAN, we use a multilayer perceptron with three
hidden layers of size 1024 and ReLU nonlinearity as the dis-
criminator. Our entire source code will be available to make it
possible to reproduce this experiment 1.

5.2. Character/word error rates

Table 1 summarizes the character/word error rates on the WSJ
eval92. The baseline systems trained on the paired si284 re-
produced almost the same results as in [20], [27] (CER7.4%)
and [1] (CER6.4%, WER18.6%). Here, the CER/WER on
the paired si84 and paired si284 were the upper (CER15.8%,
WER44.2%) and lower bounds (CER6.3%, WER18.3%) for
the semi-supervised training. We observed a clear improve-
ment in CER/WER by using semi-supervised training with LKL

(CER14.4%, WER39.5%) and without the inter-domain loss
while RNNLM and LGAN degrade the baseline model. By com-
paring LGAN and LGAN(si84), which are retrained on the un-
paired si284 and the paired si84, respectively, we confirmed that
the inter-domain loss minimization on large unpaired datasets
could reduce the ASR errors.

To investigate the effects of these different inter-domain
losses, we adjusted the ratio of the paired and unpaired train-
ing data using si84. Figure 2 shows the CER/WER for the sev-
eral paired ratios. In all cases, LKL results better for smaller
amounts of paired data than LGAN that requires additional tun-
ing of the discriminator.

However, the WER for si84 is still relatively high because
of the very limited amount of training data. Indeed, end-to-
end systems usually require a relatively large amount of data to

1https://github.com/ShigekiKarita/
espnet-semi-supervised

Table 1: Character error rates (%) on the WSJ “eval92”.

si84 si284 RNNLM Ltext Ldom CER

pair - - - - 15.8
pair - X - - 16.6

pair unpair - X - 15.6
pair unpair - X LGAN(si84) 15.0
pair unpair - X LGAN 17.9
pair unpair - X LKL(si84) 15.0
pair unpair - X LKL 14.4

- pair - - - 6.3
- pair X - - 6.1
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Figure 2: Character/word error rates (%) on the WSJ eval92
for multiple paired data ratios on the WSJ si84.

achieve high performance [4], [20], [27]. In future work, we
would like to confirm whether the promising relative improve-
ment observed in this experiment remains for tasks with a larger
amount of paired and unpaired data.

5.3. t-SNE visualization of inter-domain features

Figure 3 shows the common inter-domain features of speech
and text encoded by the models retrained on unpaired si284
without (left) and with (right) the inter-domain-loss LKL. As
the shared encoder outputs z (=320) dimensional features, we
apply dimensionality reduction to the two-dimensional plane
using t-distributed stochastic neighbor embedding (t-SNE) [28].
These results support our expectation in Section 2.3 that our
inter-domain loss regularizes the encoded features of speech
and text so that the become similar because the points of re-
trained speech (blue) and text (orange) are more mixed when
the inter-domain loss is combined.

6. Conclusions and future work
In this study, we introduced the first end-to-end semi-supervised
method for ASR. It can exploit large unpaired speech and text
data simultaneously unlike the conventional methods. Through
experiments, our Gaussian KL-based inter-domain loss im-
proved the CER from 15.8% to 14.4% by semi-supervised train-
ing on a 14-hour paired dataset and an 81-hour unpaired dataset
of the WSJ. In future work, we plan to extend the proposed ap-
proach for fully unsupervised ASR.

without inter-domain loss with inter-domain loss

speech text

Figure 3: t-SNE visualization of inter-domain features from a
model retrained without (left) and with the LKL inter-domain
loss (right).
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