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Abstract 

Fear recognition, which aims at predicting whether a movie 

segment can induce fear or not, is a promising area in movie 

emotion recognition. Research in this area, however, has 

reached a bottleneck. Difficulties may partly result from the 

imbalanced database. In this paper, we propose an imbalance 

learning-based framework for movie fear recognition. A data 

rebalance module is adopted before classification. Several 

sampling methods, including the proposed softsampling and 

hardsampling which combine the merits of both undersampling 

and oversampling, are explored in this module. Experiments are 

conducted on the MediaEval 2017 Emotional Impact of Movies 

Task. Compared with the current state-of-the-art, we achieve an 

improvement of 8.94% on F1, proving the effectiveness of 

proposed framework. 

Index Terms: fear recognition, imbalance learning, sampling 

methods, softsampling, hardsampling 

1. Introduction 

Automatically recognizing fear that is induced by movie 

segments is a challenging task in movie emotion recognition. 

Many applications can be found in this field, such as detecting 

horror movie and protecting children from potentially harmful 

video contents [1], etc.. 

In recent years, movie emotion recognition has made great 

progress. Penet et al. presented a violent shots detection system 

that studied several methods for introducing temporal and 

multimodal information in the framework [2]. In [3], Mixture 

of Experts (MoE)-based fusion model was proposed by Goyal 

et al. to combine multi-modalities for predicting the emotion 

evoked in movies. 

The frameworks mentioned above, however, are not 

suitable for movie fear recognition since they do not have the 

ability to work on the extremely imbalanced database. 

Imbalance data learning is an important challenge in movie 

fear recognition. On the one hand, the horror movie is only a 

branch of film genre with limited sources in the movie market. 

On the other hand, the number of fear segments should be 

controlled in a reasonable range even in a horror movie, 

according to the movie theory [4]. Under this circumstances, 

the total number of movie segments that can induce fear is far 

less than not-fear segments. That is to say, the original data we 

can obtain from the movie market is extremely imbalanced in 

this binary classification task (i.e. fear vs. not-fear), making the 

classifier hard to be trained.  

In this paper, we propose an imbalance learning-based 

framework to solve the above-mentioned challenge. A data 

rebalance module, which combines conditional data sampling 

methods, is applied before classification. We also integrate 

multimodal features, including audio features, visual features, 

and emotion-space features, at the feature level. Posterior 

probabilities predicted by the classifiers are fused using soft 

voting at the decision level. 

The remainder of the paper is organized as follows. The 

related work is introduced in Section 2. Section 3 describes the 

imbalance learning-based framework in detail. Experiments are 

conducted in Section 4 and results are presented in Section 5. 

In section 6, we discuss the results from different perspectives. 

Finally, the conclusion is drawn in Section 7. 

2. Related Work 

Much work focusing on movie emotion recognition has been 

studied in the past few decades. The complex interplay between 

multi-modalities, such as audio and video, makes movie 

emotion recognition a more challenging task compared with 

speech emotion recognition. 

Srivastava et al. proposed a bimodal framework for movie 

emotion recognition [5]. In this framework, they combined 

facial expression recognition with lexical analysis of dialogues 

in movies to recognize emotions of characters in movies. 

Midlevel concept feature, which is based on detectable movie 

shot concepts, was proposed to bridge the “affective gap” by 

Ellis et al. [6]. 

Traditional classifiers that are often adopted in movie 

emotion recognition include Support Vector Machine (SVM) [7] 

and Random Forest (RF) [8]. In recent years, deep learning has 

become a new classifier in many emotion recognition tasks. 

Nguyen et al. introduce a novel approach using 3-dimensional 

convolutional neural networks (C3Ds) and multimodal deep-

belief networks (DBNs) to improve the performance of 

multimodal emotion recognition [9]. 

Data imbalance is an important factor that may largely 

influence the capability of the classifier. Imbalance data 

learning can be categorized into two groups, i.e. sampling 

methods and cost-sensitive learning [10]. 

Undersampling and oversampling are two traditional 

sampling methods [10]. Undersampling, such as EasyEnsemble 

and BalanceCascade [11], randomly removes some data from 

the set of the majority class. In contrast, oversampling replicate 

samples for the set of the minority class. Algorithms such as 

SMOTE [12], Borderline-SMOTE [13], Adaptive Synthetic 

Sampling [14], and MWMOTE [15] are all classic methods of 

oversampling. 

Cost-sensitive learning mainly considers the costs of the 

misclassified samples [16]. This method has been used in many 
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classification systems, including boosting [17], decision trees 

[18], and neural networks [19]. 

3. Imbalance Learning-based Framework 

The general workflow of imbalance learning-based framework 

is illustrated in Fig.1. There are three main modules, i.e. feature 

extraction, data rebalance, and classification & post-processing. 

The sampling methods in data rebalance module and the fusion 

strategy in classification & post-processing module are descri-

bed with more details in the following subsections. 

3.1. Problem definition 

Given N training movies M1, M2, …, MN, each of them is 

segmented using a 10s-window with 5s shift, so Mn={mn1, 
mn2, …, mnkn}, kn is the number of segments in Mn. The training 

set M can be defined by all segments, i.e. M={m11, m12, …, m1k1, 

m21, …, mNkN}. Each segment mij has a label lij to indicate 

whether mij can induce fear (lij=1) or not (lij=0).   

Then, the fear recognition task can be considered as a binary 

classification problem, aiming at finding a mapping function 

  to predict labels for given movie segments, as shown in 

Equation (1): 

 ˆ ( )ij ijl m   (1) 

3.2. Sampling methods 

Undersampling and oversampling are two traditional sampling 

methods that are widely used for data rebalancing. However, 

undersampling gets true balanced data at the cost of discarding 

useful training samples while the samples generated by 

oversampling may be unreliable. Taken the complementarity of 

both undersampling and oversampling into consideration, we 

propose two data rebalance methods which combine the 

traditional sampling methods to enhance their strengths. 

The combination methods are illustrated in Fig.2. One is 

what we call hardsampling. It applies undersampling before 

oversampling, while the other one, which is called softsampling, 

applies undersampling after oversampling.  

Given an imbalanced dataset, where the size of the majority 

class is A and the size of the minority is B. A is extremely bigger 

than B. 

As for the hardsampling (see Fig.2(a)), X(X≤B) samples 

and αX (α >1) samples are randomly chosen from the minority 

class and the majority class, respectively. After this imbalanced 

undersampling, oversampling is used to generate another (α-

1)*X samples for the minority class. Therefore, a total of αX 

samples are obtained for both the minority class and the 

majority class, forming a 2αX-sample subset. This process is 

repeated T times and we get T subsets with 2αX training samples 

in each subset. 

Softsamping (see Fig.2(b)) uses oversampling in the first 

place to balance the overall training samples. Undersampling is 

then performed to generate Y samples for the majority class and 

Y samples for the minority class randomly. 

The ratio of generated minority samples and real minority 

samples in each subset maintains to be α-1 (see the dashed line 

in Fig.2(a)) in hardsampling method, while in softsampling, the 

percentage in each subset is at random. 

3.3. Post-processing strategy 

Late fusion is carried out at the decision level in the post-

processing module. Two traditional classifiers, Support Vector 

Machine (SVM) and Random Forest (RF), are adopted as the 

classifiers for the rebalanced T subsets.  

Soft voting, which is based on posterior probabilities, is 

used to fuse the predictions of SVMs and RFs. The fusion 

results are distinguished and voted using different weights, as 

presented in Equation (2): 

 (1 )SVM RFP P P      (2) 

where Px is the predicted value output by classifier x. x refers to 

SVM or RF. β presents the weight. A sample will be classified 

as fear if the voting result P is larger than a threshold t, which 

is determined experimentally. 
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Figure 1: Imbalance learning-based framework for movie fear recognition 
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4. Experiments 

4.1. Database 

The experiments are conducted on the LIRIS-ACCEDE 

database [20], which is provided in MediaEval 2017 Emotional 

Impact of Movies Task [1]. The development set consists of 30 

movies with 442.08 minutes in total length. The test set consists 

of a selection of 14 movies with 477.22 minutes in total length. 

Movies in the development set and the test set are 

fragmented into consecutive 10-second segments sliding with a 

shift of 5-second in the whole file. For each segment, valence 

and arousal values for consecutive 10-second are provided, as 

well as the indication whether this segment is able to induce 

fear (value 1) or not (value 0). 

The first 6 movies in the development set are chosen as the 

validation set for parameter tuning. The training set contains the 

remaining movies.  Data distribution is shown in Table 1. 

4.2. Feature extraction 

Total 4172-d multimodal features were extracted including 74-

d audio features, 4096-d visual features, and 2-d V-A features. 

Audio features. Fear segments often contain terrifying 

background sounds such as unexpected screams, irregular tones, 

and low grumble. To depict this characteristic, we extract the 

35-d prosody features (see Table 2, 5*7=35) and the 39-d Mel-

Frequency Cepstral Coefficients (MFCC) features by using 

openSMILE toolbox [21] with configuration files named 

“prosodyShsViterbiLoudness.conf” and “MFCC12 _E_D_A_ 

Z.conf”, respectively. 

Visual features. As for visual features, we capture images 

from movie segments every one second. CNN has proven to be 

useful in learning image features. We adopt the deep features 

extracted by VGGNet (pre-trained VGG16 [22] fc6 layer). Ten 

images are captured in a 10-second movie segment and the 

segment-level features are the average of each image features. 

Valence-Arousal features. We consider that audio and 

visual features are not well-designed to describe induced 

emotions since they also contain some redundant information 

that is irrelevant to affects. In order to learn features that are 

directly related to emotion, features in the image space are 

embedded into the Valence-Arousal (V-A) emotion space to 

extract emotion-related features, which we call V-A features. 

According to the labeled V-A of 10-second movie segment on 

the training set, we train a Support Vector Regression (SVR) 

model using VGG features and then embed the VGG features 

of the training set, the validation set and the test set in the 

emotion space using the pre-trained SVR. 

4.3. Evaluation metrics 

Accuracy, precision, recall, and F1 are evaluation metrics that 

are often used to assess the performance of binary classification 

systems, defined as 
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where tp, tn, fp, and fn represent true positive, true negative, 

false positive, and false negative, respectively. Among all these 

metrics, F1 is the most comprehensive one, especially when the 

dataset is imbalanced. 

The official metrics used in the MediaEval 2017 Emotional 

Impact of Movies Task are all calculated at the movie-level. To 

be more specific, all the metrics are firstly calculated on each 

movie separately and then averaged, defined as 
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    (4) 

where R refers to the results of accuracy, precision, recall, and 

F1. N is the number of movies. Mi represents the i-th movie. 

4.4. Experimental setup 

In the data rebalance module, α and X is fixed to 2 and 200 

respectively, and Y is fixed to 230.  

In the classification & post-processing module, SVM and 

RF are trained using the scikit-toolkit [23]. RBF kernel is used 

for SVM. The number of trees in RF is 100 and the maximum 

number of leaf nodes is 50. Decision threshold t and weight β 

are determined simultaneously by grid search from 0 to 1 with 

a step of 0.05. All these parameters are tuned on the validation 

set based on movie-level F1. 

5. Results 

5.1. Contribution of sampling methods 

We choose the framework without data rebalance module as the 

baseline system. Traditional undersampling and oversampling 

methods we choose are random sampling and SMOTE, 

respectively. Random sampling generates 20 subsets using all 

fear samples (230, see Table 1) and the same number of not-

fear samples. SMOTE generates fear samples until the numbers 

of fear samples and not-fear samples are the same (4062, see 

Table 1). In softsampling and hardsampling, the undersampling 

and oversampling methods are also random sampling and 

SMOTE, respectively. The features used in these systems are 

all the integration of audio, visual, and Valence-Arousal. 

Table 3 presents the results of different sampling methods. 

The results on F1 demonstrate that softsampling outperforms 

traditional sampling methods. The framework without data 

rebalance module has the worst performance on most of the 

metrics, especially on F1. 

Table 1: Data distribution 

 # Movie 
# Fear 

Segments 

# Not-fear 

Segments 

# Total 

Segments 

Training Set 24 230 4062 4292 

Validation Set 6 53 929 982 

Test Set 14 204  5506 5710 

 

Table 2: Prosody features 

Low Level Descriptor Functional 

1. F0 1. Standard deviation  
2. Mean 
3. Linear regression 
4. Centroid 
5. Percentile 10.0 
6. Percentile 90.0 
7. Percentile range 0-1 

2. log(F0) 

3. Voicing final unclipped 

4. Harmonics to noise ratio 

5. Loudness 
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It seems that the performance of hardsampling is worse than 

simply undersampling or oversampling. One possible reason is 

that the number of samples used for SMOTE in hardsampling 

is much less than in softsampling. Many incorrect samples are 

generated in hardsampling during this process, making the 

classification unreliable. 

5.2. Contribution of modalities 

According to the conclusion drawn in section 5.1, we apply 

softsampling in the data rebalance module to present the 

contributions of modalities, shown in Table 4. 

The results show that V-A plays an important role in the 

multimodal features. Visual is the best single modality that 

contributes most to the framework. Considering dimensions, 

the performance indicating that 2-d V-A features are extremely 

emotion-related and pure, comparing with 4096-d visual 

features and 74-d audio features. 

5.3. Comparison with other research groups 

Table 5 compares the best performance of proposed framework 

with other groups in the MediaEval 2017 Emotion Impact of 

Movie Task. The performance of the proposed framework 

achieves a qualitative leap on F1, up to 8.94% increase 

compared with the best group THUHCSI [27]. 

We notice that the first three groups [24-26] did not pay 

attention to the imbalance of the database. This makes their 

frameworks tend to predict more segments as not-fear, which 

may improve accuracy and precision. However, recall is pretty 

low in this case, making F1 declines in general.  

6. Discussion 

There are 14 movies in the test set, 4 of which do not contain 

fear segments. Therefore, even if the system can perfectly 

classify each test segment, precision is only 0.7143 (i.e. (14-

4)/14) at the most, so do recall and F1. Moreover, some movies 

have only few fear segments, making recall sensitive to the 

algorithm tuning. The imbalanced distribution of fear segments 

between movies may also result in the unreliability of movie-

level evaluation metrics.  

Therefore, to further assess the performance of our system, 

we explore the evaluation metrics from another two 

perspectives. (1) movie-level metrics are recalculated on the 

sub-test set which only contains movies that have at least one 

fear segment. (2) segment-level metrics on the whole test set 

are computed. Segment-level ignores the differences between 

movies and treat all the segments equally. When segment-level 

metrics is adopted to evaluate our system, we tune parameters 

at the segment-level correspondingly. 

Table 6 demonstrates that our framework can find 69.57% 

fear segments on the sub-test set with 44.39% precision. From 

this point of view, our framework can be used as a reference in 

the horror movie ranking or detection. However, precision at 

the segment-level is only 20.24% with 58.33% recall, indicating 

that there is still a far distance before application. Moreover, 

accuracy is 90.30% in this case, which suggests that it is not a 

suitable evaluation metric on imbalanced database. 

7. Conclusion 

In this paper, we propose a novel imbalance learning-based 

framework for movie fear recognition. Several sampling 

methods are applied in the data rebalance module. Softsampling 

and hardsampling are proposed to combine the advantages of 

oversampling and undersampling. Multimodal features are 

extracted and integrated at the feature level. Posterior 

probabilities predicted by the classifiers are fused using soft 

voting at the decision level. The results of our framework reach 

a state-of-the-art performance on recall and F1 in the MediaEval 

2017 Emotion Impact of Movie Task.  

Although this paper has provided a promising baseline for 

movie fear recognition, there are still several potential improve-

ments remain to be investigated in the future. Firstly, 

considering the temporal structure of movies, contextual 

features are going to be learned using LSTM. Secondly, 

softsampling and hardsampling will be explored in detail to 

further assess their performance. 
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Table 4: Contribution of modalities 

Modality Accuracy Precision Recall F1 

Audio+Visual+V-A 0.7745 0.3171 0.4969 0.3246 

Audio+Visual 0.7844 0.3205 0.4510 0.3090 

V-A 0.6589 0.2267 0.3402 0.2412 

Audio 0.6449 0.1825 0.4787 0.2353 

Visual 0.7735 0.3064 0.4346 0.2907 

 

Table 3: Contribution of sampling methods 

Sampling Method Accuracy Precision Recall F1 

Without Rebalance 0.7408 0.2586 0.2278 0.1863 

SMOTE 0.7258 0.2625 0.5379 0.3056 

Random Sampling 0.8317 0.3518 0.3435 0.2961 

Hardsampling 0.8201 0.2594 0.3895 0.2843 

Softsampling 0.7745 0.3171 0.4969 0.3246 

 

Table 6: Different evaluation perspectives 

Perspective Accuracy Precision Recall F1 

Movie-level 0.7745 0.3171 0.4969 0.3246 

Movie-level (sub)*  0.7628 0.4439 0.6957 0.4544 

Segment-level 0.9030 0.2024 0.5833 0.3005 

* It refers to a subset of the test set, in which each movie contains at 

least one fear segment. 

 

Table 5: Comparison with other groups 

Group Name Accuracy Precision Recall F1 

HKBU [24] 0.7630 0.1688 0.0657 0.0786 

MIC-TJU [25] 0.8623 0.3756 0.0991 0.1424 

TCNJ-CS [26] 0.7296 0.2553 0.1922 0.1740 

THUHCSI [27] 0.8153 0.2318 0.2781 0.2352 

Proposed method 0.7745 0.3171 0.4969 0.3246 
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