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Abstract
The recently proposed Permutation Invariant Training (PIT)

technique addresses the label permutation problem for multi-
talker speech separation. It has shown to be effective for
the single-channel separation case. In this paper, we pro-
pose to extend the PIT-based technique to the multichannel
multi-talker speech separation scenario. PIT is used to train
a neural network that outputs masks for each separate speaker
which is followed by a Minimum Variance Distortionless Re-
sponse (MVDR) beamformer. The beamformer utilizes the spa-
tial information of different speakers and alleviates the perfor-
mance degradation due to misaligned labels. Experimental re-
sults show that the proposed PIT-MVDR-based technique leads
to higher Signal-to-Distortion Ratios (SDRs) compared to the
single-channel speech separation method when tested on two-
speaker and three-speaker mixtures.
Index Terms: multi-channel speech separation, beamforming,
permutation invariant training, mask estimation

1. Introduction
Although the human auditory system can excellently perceive
information in complex acoustic environments, the speech
recognition performance of computer remains a challenging
task when interferences and noises exist. The overlapping of
speech utterances is one critical factor that impairs auditory
comprehension of both human beings and machines. This issue
is well known as the cocktail party problem [1] and its corre-
sponding solution, speech separation, has been studied for many
years. Various techniques have been proposed to address the
speech separation task, such as Non-negative Matrix Factoriza-
tion (NMF) [2, 3, 4, 5], Computational Auditory Scene Anal-
ysis (CASA) [6, 7, 8], Hidden Markov Model(HMM) [9, 10],
and so on. In recent years, with the development and success-
ful applications of deep neural network in many fields, neural
network-based speech separation has attracted increasing atten-
tion.

In [11, 12, 13], the authors proposed to train a deep neural
network to estimate time-frequency masks, which take either bi-
nary or ratio values calculated from the relative energy between
the target source and noise. Then, the target source is obtained
by multiplying the mask to the mixture signal in the frequency
domain. However, only one target source is considered in these
works. If there exist multiple target speakers in the signal, these
methods tend to fail because of the label permutation or label
ambiguity problem. One approach to deal with this problem is
the speaker-aware method proposed in [14, 15], which informs

the neural network using the features of the target speaker so
that it learns to follow the speaker characteristics throughout
the utterance. In the method, speaker-dependent features are
extracted and concatenated with spectral features as inputs to
the neural network.

In contrast to the particular speaker extraction work, the
multi-talker separation task proposes to reconstruct all the
speaker sources from the mixture. In [16, 17, 18], the neural
networks are designed to output two masks, each correspond-
ing to one target speaker. Then two target speeches can be sep-
arately obtained using the estimated masks. Nevertheless, these
methods only work under particular conditions. [16, 18] only
considers different gender of speakers and [17] assumes specific
relative energy ratios of the mixed talkers. These constraints are
helpful for the neural network to trace the target speakers, but
the label permutation problem is not successfully solved.

To deal with the label ambiguity problem, two kinds of ap-
proaches were recently proposed: the deep clustering (DPCL)
method [19, 20, 21] and the Permutation Invariant Training
(PIT) method [22, 23]. The DPCL based approach first trains
a deep recurrent neural network to map the mixture into an
embedding space, where k-means clustering is used to assign
the time-frequency bins to different speakers. This strategy as-
sumes that only one source dominates each time-frequency bin;
and the frequency bins belonging to same source are close to
each other in the embedded space; and hence, by using a cluster-
ing algorithm, multi-talker speech can be separated. However,
each time-frequency bin could simultaneously belong to differ-
ent targets. Without making these assumptions, the PIT method
is proposed to compute two losses by exchanging the target la-
bels when calculating the training loss and uses just the lower
one in the back propagation process. The multi-frame features
are fed to the neural network and the outputs are multi-frame
masks for each targets. Nevertheless, there is one more issue to
be tackled, the consistency of masks over time for each speaker.
This issue is addressed by using utterance level PIT (uPIT)
in [23], and otherwise, a speaker tracing strategy is needed.

Although the above speech separation methods have shown
promising results, they are all single-channel based and have
inherent limitations compared with multichannel algorithms
that can additionally utilize the spatial information of differ-
ent speakers. There has been some pioneering work integrating
single-channel neural networks and beamforming techniques,
such as [24][25]. These methods originate from the idea of
mask estimation network based beamforming [26][27], that has
proved effective in speech enhancement and speech recognition
tasks. The neural networks are trained to predict the mask of
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Figure 1: Overall flowchart of proposed system.

the target speech. Then a mask-based beamformer is used to
estimate the expected signal. In this paper, we follow a similar
routine and propose to tackle the multi-talker speech separation
task using PIT and a minimum variance distortionless response
(MVDR) beamformer. Specifically, utterance based PIT is em-
ployed to a single-channel speaker separation network, which
provides separate masks for the following beamforming stage.
The beamformer is based on spatial covariance matrixes that in-
volve temporal expectation in the estimation process. This turns
out helpful in alleviating the misaligned speaker masks. The
PIT-MVDR based technique leads to higher signal-to-distortion
ration (SDR) compared with the single-channel based separa-
tion algorithms.

2. Overview of proposed system
The overall flowchart of our proposed system is illustrated
in Figure 1. Consider M -channel observations of S speak-
ers, the systerm consists of four main components: the Short-
Time Fourier Transform (STFT) component, the mask estima-
tion component, the median filtering components and the beam-
forming components. Firstly, the M -channel raw wave data is
transformed into time-frequency domain by STFT. Then, the
magnitude spectrum is fed to the mask estimation component.
The mask estimation component consists of M Recurrent Neu-
ral Networks (RNN), one RNN network for each wave channel.
These RNN networks have shared weights and are trained to
output masks for all the speakers. For each speaker, the RNN
network output the M -channel masks. The median of the M -
channel masks is taken and fed to the beamforming component.
The beamforming component consists of S MVDR beamform-
ers, each MVDR beamformer targeted for one speaker. Finally,
the beamforming component outputs the estimated speech for
all target speakers.

3. Permutation invariant training for
speaker masks estimation

This section presents the permutation invariant trained neural
network for multi-speaker mask estimation. The training is per-
formed on one neural network and the networks of all channels
share the same framework and weights. For comprehensive-
ness, we take the 2-speaker scenario as example. The 2-speaker
separation model is shown in Figure 2. The components in the

dash block is used only for training procedure, while the out-
side parts contribute for both training and inferring procedures.
For training the networks, a phase-sensitive mask is utilized as
labels with minimum cross loss function.

3.1. Phase-sensitive mask

For supervised speech separation, masking based targets per-
forms better than spectral amplitude based targets in general
[11]. Among these proposed masks, the phase-sensitive mask
considers the phase difference between the expected signals and
mixture and hence yields better results [28] in terms of signal-
to-distortion ratio (SDR). The labels with phase-sensitive mask
is defined as follows:

Mpsm,s(t, f) =
|Xs(t, f)|
|Y (t, f)| cos(θy(t, f)− θs(t, f)) (1)

where t is the time index, f is the frequency index, and θy ,
θs are phases of the mixture Y (t, f) and the target speech
Xs(t, f), respectively. Here, s is the index of speaker.

3.2. Minimum cross loss functtion

In contrast to speech enhancement task, one critical challenge
for multi-speaker separation is the label ambiguity problem. To
solve the problem, Minimum Cross Loss (MCL) function was
adopted for neural network training. Minimum cross loss func-
tion training is also called permutation invariant training in [22].
By this training strategy, the loss function is selected from Nor-
mal Mean Square Errors (NMSE) or Cross Mean Square Errors
(CMSE) between the estimated signals and labels. Let lossNMSE

and lossCMSE denote NMSE and CMSE, respectively. Hence,

lossNMSE = ||M̃psm1
−Mpsm1

||2 + ||M̃psm2
−Mpsm2

||2 (2)

lossCMSE = ||M̃psm1
−Mpsm2

||2 + ||M̃psm2
−Mpsm1

||2 (3)

where M̃psm1
and M̃psm2

denote the estimated masks, and
Mpsm1

and Mpsm2
denote the two speaker labels. The mini-

mum loss function is defined as:

lossMCL = λ · lossNMSE + (1− λ) · lossCMSE (4)

where λ is a chosen determiner defined as:

λ =

{
1, lossNMSE ≤ lossCMSE

0, otherwise (5)
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Figure 2: The model for 2-speaker speech separation.

λ ensures that using the lower one of lossNMSE and lossCMSE as
the final training loss in the back propagation stage.

4. Speaker mask based beamforming
The estimated masks can be directly used to obtain the separated
speakers by applying the mask to the mixture signal. However,
given the limitation of single-channel based approach, we pro-
pose to construct mask-based MVDR beamformers for better
speaker separation. Generally, beamforming techniques aim to
design a complex-valued filter that extract the desired source
and suppresses the interference signals and noises at the same
time. The proposed MVDR only relies on the spatial covariance
matrixes of the target source, interference and noise, that are
computed from the estimated masks, and no longer depend on
the geometry of the microphone array as in conventional meth-
ods.

4.1. MVDR beamforming

The MVDR beamformer is derived to minimize the noise power
under the constraint that the target source remain distortionless:

wMVDR = argmin
w

wHΦn+iw s.t. wHd = 1 (6)

where (.)H indicates the Hermitian transpose, and d denotes
the steering vector of the target signal. Φn+i is the spatial co-
variance matrix of the noises and interferences. The solution to
this optimization equation is

wMVDR =
Φ−1

n+id

dHΦ−1
n+id

(7)

For multi-talker speech separation, multiple MVDR beam-
formers are used each for one target speaker. Let s denote the
index of the MVDR beamformers as well as the index of speak-
ers. The estimated signal of speaker s is given by

X̃s(t, f) = wH
MVDR,sY(t, f) (8)

4.2. Steering vector computation

The beamformer coefficients require the knowledge of the steer-
ing vector, that is derived from the principle eigenvector of the
target speech spatial covariance matrix as:

ds = P{Φss} (9)

where the operationP{·} returns the eigenvector corresponding
to the maximal eigenvalue of a matrix. Φss denotes the signal
spatial covariance matrix of speaker s and can be obtained by

Φss(f) =

∑T
t=1Mss(t, f)Y(t, f)Y(t, f)H

∑T
t=1Mss(t, f)

(10)

where Mss denotes masks belonging to speaker s, which are
taken median of the outputs of all channels. Additionally, Φss

is constrained to rank-1 as described in [27].
The spatial variance matrix of noises and interferences can

be estimated as follows :

Φi+n(f) = Φi(f) + Φn(f) (11)

where Φn(f) denotes noise spatial covariance matrix. Φi(f)
denotes the spatial covariance matrix of all interferences that
corresponds to target speaker s, that are estimated as follows:

Φn(f) =

∑T
t=1Mn(t, f)Y(t, f)Y(t, f)H

∑T
t=1Mn(t, f)

(12)

Φi(f) =
S∑

j 6=s

Φjj(f) (13)

whereMn denotes the median mask of noises. Φjj(f) denotes
the spatial covariance matrix of source j and can be derived
similarly as in equation (10).

5. Experiments and results
In this section, we describe the experimental setups and results.
The experimental results show that our proposed approach sig-
nificantly improves performance in terms of SDR[29] compared
with uPIT-based single-channel method and deep clustering-
based beamforming approach[25].

5.1. Database

We created two data sets for evaluation: 2-speaker mixture set
and 3-speaker mixture set. Moreover, each data set was divided
into training set, development set, and evaluation set. For each
data sets, we first generated mixture lists to indicate the source
utterances of each mixture. The lists of training set (20000 ut-
terances) and development set (5000 utterances) were generated
from Wall Street Journal (WSJ0) [30] training set si tr s. The
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Figure 3: Simulated Room Conditions.

lists of evaluation set (3000 utterances) were generated from
WSJ0 development set si dt 05 and evaluation set si et 05.

The multi-channel data were generated by convolving im-
pulse responses with speech according to the mixture lists. The
impulse responses were simulated by image method [31]. The
dimensions of simulated room are 4.45m× 3.55m× 2.8m, as
shown in Figure 3. The T60 reverberation time is 200 ms. We
assumed a rectangular microphone array with 6 sensors, which
arranged as CHiME3 [32] while all directions of microphone
were upward. The microphone array was located at the center
of the room. The position of speakers were randomly selected
from potential locations, which are marked by cross symbol in
Figure 3. The number of potential locations is 64, and these po-
tential locations are evenly distributed in four concentric circles,
for which the radius are 0.4m, 0.7m, 1.0m, 1.3m, respectively.
The degree of angle between adjacent location is 22.5◦.

5.2. Neural Network

For 2-speaker and 3-speaker separation, we constructed six
RNN networks for mask estimation, respectively. Each RNN
network has 3 bi-direction long short-term memory (BLSTM)
hidden layers followed with a feedfordward (FF) output layer.
Each BLSTM layer has 896 cells with tanh activation functions.
The feedfordward layer has S*129 units with ReLU activation
functions, here S equals the number of sources. The Adam
learning algorithm was used with initial learning rate of 0.0005
and dropout rate of 0.5. The utterance-level loss function was
used for optimization [23]. If the validation loss decreased, the
model will be stored. Otherwise, previous model was restored
and the learning rate was scaled by 0.7. The training process
was stopped after 5 times consecutive increase of validation
loss.

5.3. Results

Experimental results were evaluated in terms of SDR. The re-
sults is shown in Table 1. The SDR for 2-speaker and 3-speaker
separation of our proposed approach (uPIT-BFM) are 12.38
dB and 10.59 dB, respectively. This significantly improved
by 2.25 dB and 2.57 dB compared with uPIT-based single-
channel (uPIT-SGL) method. The comparisons between differ-
ent mask-based beamforming show that our proposed approach

Table 1: SDR improvements of 2-speaker and 3-speaker sep-
aration compared with uPIT-based single-channel separation
and other mask-based beamforming separation. The SDR of
CGMM-BFM and DPCL-BFM (oracle number of sources) [25]
are listed as comparisons

CGMM-
BFM

DPCL-
BFM

uPIT-
SGL

uPIT-
BFM

2-spk. 11.48 10.36 10.13 12.38
3-spk. 10.95 10.27 8.02 10.59

Table 2: SDR improvements for same gender and different gen-
der on 2-speaker scenario. The position of speakers in the test
set contains all potential locations marked in Figure 3.

Avg. Dif.-Gen. F - F M - M
uPIT 10.13 11.61 9.30 7.89
Beamforming 12.38 13.23 11.29 11.49
Increased 2.25 1.62 1.99 3.6

achieves better performance than CGMM-based beamforming
(CGMM-BFM)[25] and DCLP-based beamforming (DPCL-
BFM)[25] on 2-speaker mixture scenario by 0.9 dB and 1.1 dB,
respectively. For the 3-speaker separation, the proposed uPIT-
BFM improves SDR by 0.37 dB compared with DPCL-BFM
while decreases 0.4 dB compared with CGMM-BFM. Although
the performance slightly decreased than CGMM-BFM for 3-
speaker separation, it is still comparable between uPIT-BFM
and CGMM-BFM.

The SDR for same gender and different gender of 2-speaker
separation is shown in Table 2. The result concludes that SDR
for different gender speech separation is better than the same
gender condition. Moreover, from Table 2, we also conclude
that the lower SDR of single-channel based separation, the
higher SDR improved by MVDR beamforming. For example,
on 2-speaker scenario, the lowest SDR of single-channel sepa-
ration is 7.89 dB under M-M condition and the corresponding
SDR is increased by 3.6 dB, of which gained 45.6% improve-
ment.

6. Conclusion

In this paper, we have proposed an approach for multichan-
nel multi-talker speech separation by using PIT training and
MVDR beamforming. Firstly, we trained neural networks
for mask estimation with utterance PIT. Then, we constructed
mask-based MVDR beamformers for target speeach prediction.
This method takes the advantages of the PIT method and the
beamforming technique. Experimental result demonstrates that
the proposed method significantly improves SDR for both 2-
speaker and 3-speaker separation by 2.25 dB and 2.57 dB, re-
spectively. In future work, we will integrate spatial features in
training the speaker mask estimation network and evaluate our
proposed approach in real-world automatic speech recognition
tasks.
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