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Abstract
We introduce UltraSuite, a curated repository of ultrasound and
acoustic data, collected from recordings of child speech ther-
apy sessions. This release includes three data collections, one
from typically developing children and two from children with
speech sound disorders. In addition, it includes a set of an-
notations, some manual and some automatically produced, and
software tools to process, transform and visualise the data.
Index Terms: Ultrasound and Acoustic Data, Child Speech,
Disordered Speech, Speech Therapy.

1. Introduction
Speech sound disorders (SSDs) affect quality of life for a large
number of children. In the UK, 11.4% of eight year olds1 have
persistent SSDs, ranging from common clinical distortions to
speech that is unintelligible even to close family members [1].
SSDs are similarly prevalent in other countries [1]. Children
with disordered speech experience adverse outcomes of many
kinds: social and psychological outcomes, difficultly with lit-
eracy and educational attainment, and long-term employment
prospects [2, 3, 4, 5].

However, current clinical practice for assessing these disor-
ders is subjective and inaccurate [6]. Instrumental methods that
use articulatory imaging, such as ultrasound, provide a more
accurate diagnosis, at the expense of large amounts of manual
effort from a highly trained pathologist. Machine learning has
the potential to automate much of this work, leading to better
outcomes for patients without increasing workload for patholo-
gists, but publicly available data that could facilitate this work is
scarce. Existing work reports results on adult data [7, 8, 9], data
that is not publicly available [10], or data that is in proprietary
format [11, 12, 13]. Additionally, child speech processing and
disordered speech processing are both known to present many
challenges [14, 15, 16, 17]. Having access to the right kind of
data encourages more researchers to work on this problem and
compare results.

In this paper we introduce UltraSuite, a curated repository
of data obtained from child speech therapy sessions which used
articulatory imaging techniques. The repository contains syn-
chronised ultrasound and acoustic data recorded with a range of
children with different categories of SSDs in addition to typi-
cally developing children who were learning new articulations.

∗Equal contribution.
1Native speakers of English are expected to master production of all

vowels and consonants by age 8 [1].

As part of the repository, we release annotations (manually and
automatically produced) and software tools to process, trans-
form, and visualise the data. The repository will continue to
grow and become larger and more comprehensive as we add
new studies, ensuring that all new data is available in the same
standardised format. We invite other researchers to contribute
their data to this repository.

1.1. Motivation

To better understand the potential for machine learning meth-
ods to automate the use of instrumental techniques for assess-
ing, diagnosing and treating children with SSDs, it is useful to
illustrate how instrumental techniques are used.

Perception-based methods for assessing SSD are known to
be highly subjective [6]. Ultrasound imaging of the tongue pro-
vides additional information not available in the acoustic sig-
nal (e.g., the presence of double articulations or undifferenti-
ated lingual gestures [18]). This additional information reduces
subjectivity and in some cases changes the diagnosis. However,
working with speech recordings and ultrasound videos is time
consuming and difficult.

In order to provide a diagnosis or measure therapy progress,
the speech pathologist goes through the following process:
searching therapy recordings for occurrences of words of in-
terest (the recordings often contain background noise, the voice
of the therapist encouraging the child to speak, and the child ut-
tering multiple words and potentially making mistakes); iden-
tifying boundaries of a phone of interest both in the audio and
ultrasound video; locating the mid-frame of the phone in the
ultrasound video; fitting a contour to the tongue in the image;
and finally, measuring how similar/dissimilar the tongue shape
is from the average tongue shape in correct articulation. While
this process offers a more accurate diagnosis it is time consum-
ing, tedious, and requires specialist training and is therefore not
offered clinically. Automating it would allow it to be offered to
children as standard practice.

1.2. Broader Applicability of the Data

Access to the articulatory domain through imaging techniques
such as ultrasound gives additional information over the acous-
tic domain. Indeed, in addition to the area of speech and lan-
guage pathology, prior work has shown that articulatory infor-
mation has the potential to improve performance in multiple
aspects of speech technology, for instance: speech recognition
[19], speech synthesis [20], and silent speech interfaces [21].
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Table 1: The number of participants, their gender and ages. We
report ages in years (y) and months (m). We recorded the ages
of participants on their single visit in UXTD, and on their first
baseline in UXSSD and UPX.

UXTD UXSSD UPX

Number of participants 58 8 20
Female 31 2 4
Male 27 6 16
Mean age 9y 3m 7y 7m 8y 4m
SD age 1y 10m 1y 6m 2y 2m
Min age 5y 8m 5y 11m 6y 1m
Max age 12y 10m 10y 1m 13y 4m

1.3. Paper Outline

In Sections 2 and 3 we describe the process of collecting and
standardising the data and include a description of a train-test
split for a subset of the data. In Section 4 we describe our anno-
tation work, followed by data statistics in Section 5, a descrip-
tion of the software tools in Section 6, and license information
in section 7. We conclude in Section 8 with a brief description
of data we are currently in the process of collecting with the aim
of including in the repository in the future.

2. Data Collection
Ethical approval to collect the data was granted by the NHS Re-
search Ethics Service. We recorded the data in the laboratory
using the Articulate Assistant Advanced software (AAA), ini-
tially storing it in the AAA proprietary data format [22]. All
sessions were conducted by a speech and language therapist
(SLT), and both the children and the therapists spoke English
with a standard Scottish accent. All therapists were female. We
collected three datasets, one with typically developing children
(TD) and two with children with speech sound disorders (SSD).
The participants’ guardians provided consent to allow the data
to be made available to the research community2.

A set of prompts specified the verbal task the child was ex-
pected to perform; for example, sentences to be read, isolated
phones to be uttered, or pictures to be described. For each utter-
ance, we recorded the acoustic signal and an ultrasound video
of the child’s mouth. We placed the ultrasound transducer probe
submentally (under the chin) capturing the midsagittal view of
the child’s tongue [23] and stabilised it using a headset. Of-
ten the child needed encouragement to speak, so the acoustic
signal contains both the SLT’s speech and the child’s speech.
The child didn’t always stick to the prompt; they hesitated, re-
peated, or made mistakes. In picture-describing tasks the speech
is conversational in nature (e.g., “what’s this?” “a frog stuck in a
spiderweb” “aha, anything else?” “a strawberry in his mouth”).
The prompt is therefore not a transcription of the audio.

2.1. Typically Developing Children

We recorded the typically developing subset of the Ultrax
dataset (UXTD) between 11/2011–10/2012. The purpose of the
experiment was to evaluate the effectiveness of ultrasound as a
visual biofeedback tool for learning non-English articulations
[24]. Each child attended once and recorded a single session.

2We excluded from the repository participants whose guardians did
not provide consent.

2.2. Children with Speech Sound Disorders

The repository at this stage contains two datasets recorded with
children with speech sound disorders. The first is the Ultrax
speech sound disorders subset (UXSSD) which we recorded
between 12/2011–07/2014, and the second is the UltraPhonix
dataset (UPX), recorded between 06/2015–03/2017. The chil-
dren exhibited a range of SSDs including phonological de-
lay, phonological disorder, inconsistent phonological disorder,
vowel disorder, articulation disorder, and childhood apraxia of
speech. The data was recorded specifically for the purpose of
evaluating the effectiveness of ultrasound as a visual biofeed-
back tool for therapy [25, 26]. Each child attended several
sessions: suitability (before baseline), baseline (1–5 sessions),
therapy (1–12 sessions), mid-therapy, post-therapy (immedi-
ately after therapy), and maintenance (several months after ther-
apy). Table 1 shows the number of participants in each of the
three datasets, their gender and ages. Persistent SSDs are more
commonly associated with boys than girls [1], which explains
the gender imbalance in the data.

3. Data Preparation
We exported the raw data from the proprietary AAA format to
obtain a tuple of four files per utterance:

1. Prompt file: contains text describing the task the child
was given and the date-time of recording.

2. Audio file: RIFF wave file, sampled at 22.05 KHz, con-
taining the speech of the child and the SLT.

3. Ultrasound file: a sequence of ultrasound frames cap-
turing the midsagittal view of the child’s tongue. A sin-
gle ultrasound frame is recorded as a 2D matrix where
each column represents the ultrasound reflection intensi-
ties along a single scanline. The surface of the probe is
convex and the scanlines are directed in an equal-angled
fan in the scanning plane. In order to correctly interpret
the ultrasound data, a set of parameters are recorded in
the parameter file described below.

4. Parameter file: contains a set of parameters to interpret
the ultrasound data and synchronise it with the audio.
It gives the number of scanlines in each frame (63), the
number of data points per scanline (412), number of bits
used to represent each reflection intensity data point (8),
the angle between each scanline (0.038◦), the number of
ultrasound frames per second (≈121.5 fps), and a syn-
chronisation offset relative to the audio in seconds.

We discarded utterance tuples where the audio was too short
and was unrelated to the prompt.

3.1. Prompts

We standardised the formatting of the prompt text by remov-
ing inconsistencies, such as replacing tabs with white spaces,
removing duplicate or trailing white spaces, correcting the cap-
italisation of proper nouns, and correcting misspellings. We
identified six distinct types of prompts:

(A) Words: a group of semantically unrelated English words
(e.g., “down link pat get”) which were either identified
by the SLT as being diagnostically useful, or were based
on a protocol from the Diagnostic Evaluation of Articu-
lation and Phonology (DEAP) [27].

(B) Non-words: designed to elicit certain phones from the
child but which are not real words (e.g., “p apa epe opo”).
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Table 2: The number of utterances per prompt type, with the
number of unique prompts in parentheses for each of the three
datasets. We encode the type identifier in the file names.

Type ID UXTD UXSSD UPX

Words A 962 (26) 2708 (291) 3838 (455)
Non-words B 607 (27) 495 (59) 560 (60)
Sentence C 0 (0) 445 (35) 1020 (128)
Articulatory D 2934 (45) 132 (17) 211 (31)
Non-speech E 116 (2) 9 (1) 302 (1)
Other F 0 (0) 56 (12) 61 (7)

Total 4619 (100) 3845 (415) 5992 (682)

(C) Sentence: designed to elicit co-articulation (e.g., “It’s a
toe Pam”) or designed to examine phones of interest in
different contexts at the sentence level (e.g.,“My Granny
Maggie got a golden gown” where /g/ occurs in different
word positions and different vowel environments).

(D) Articulatory: single or multiple phones occurring once
or repeated. The SLT pronounces a phone, or plays a
recording of a phone at different speeds, and the child is
expected to imitate what they hear. The latter is known
as a Diadochokinesis imitation task [28].

(E) Non-speech: includes swallowing motions recorded to
obtain a trace of the hard palate, and coughs recorded to
obtain additional tongue shapes.

(F) Other: conversational speech, such as describing a pic-
ture or telling a story about it (e.g., “Connected speech
picture 1”).

The number of utterances per prompt type in each dataset and
the number of unique prompts are shown in Table 2.

3.2. File Naming Convention

We placed each session in a directory and labelled it accordingly
(Suit, BL, Therapy, Mid, Post, and Maint). Typically develop-
ing children recorded a single session each, so the UXTD di-
rectories are labelled with speaker identifiers only. Within each
session, we sorted the utterances by the date-time of recording
and indexed them from 001. We then appended the prompt type
identifier (A-F) to the index. For example, if the 5th utterance
in a session is a sentence, the tuple of files associated with the
utterances are 005C.txt, 005C.wav, 005C.ult, and 005C.param.

3.3. Train, Development, and Test Splits

We split the UXTD dataset into training, development, and test-
ing subsets balancing by gender and age. Training contains 40
children (18 male, 22 female), development 6 children (3 male,
3 female), and testing 12 children (6 male, 6 female). The mean
and standard deviation of the children’s age in each subset is:
9y 5m ± 1y 10m, 9y 1m ± 1y 9m, and 8y 12m ± 1y 10m.

We omit a split for UXSSD and UPX due to the small num-
ber of participants in each SSD subcategory. However, we urge
users of this data to report the ID of the participants and the
name of sessions used for training and testing.

4. Data Annotation
In addition to the data described in the previous section, we re-
lease a set of annotations, including pronunciation dictionaries

for each of the datasets, audio transcriptions for UXTD, SLT
annotations, automatic speaker labelling and automatic phone
alignments, all of which can aid modelling.

Pronunciation dictionaries: We prepared a pronunciation
dictionary for each of the three datasets. We did this by listing
the words that appear in the prompts, looking them up in a stan-
dard lexicon, and copying their phonetic transcription. We used
a Scottish accent variant of the Combilex lexicon to match the
accent in the data [29, 30]. For out-of-vocabulary words, such
as the non-words of type B prompts, an annotator with training
in phonetics transcribed their expected pronunciation. The vo-
cabulary size is 296, 1048, and 1437 for the UXTD, UXSSD,
and UPX datasets respectively.

SLT labelling: The SLTs annotated a small portion of the
data for the intervention studies the data was originally col-
lected for [24, 25, 26]. The annotations include boundaries of
words and phones of interest, and tongue contours manually
fitted to the mid-frame of phones of interest in the ultrasound
video. The number of utterances with at least one label are
3900, 152, and 3919 in the UXTD, UXSSD, and UPX datasets,
respectively. We release these annotation as Praat’s TextGrid
files [31] and follow the same naming convention described in
Section 3.2.

Audio Transcriptions: Because the audio recording is not
a direct match to the prompt, we provide a small subset of tran-
scribed utterances, namely utterances of types A and B for all
speakers in the UXTD dataset. A single annotator listened to
the audio and transcribed the child’s speech. SLT interven-
tion is loosely transcribed as [SLT:token], where token takes
the form of spn (spoken sound) to denote generic SLT speech,
or the form of a word if that word occurs in the prompt, for
example [SLT:helicopter]. It is less obvious how to transcribe
disordered speech, we therefore do not provide transcriptions
for the UXSSD and UPX datasets.

Speaker labelling: In order to attribute different parts of
the audio to different speakers, and to quantify the hours of
speech, we trained a model that discriminates between SLT and
child speech. We used the transcriptions of the UXTD dataset as
training data by reducing words to child and SLT tokens, corre-
sponding to turn-taking sequences between therapist and partic-
ipant. Using Kaldi’s [32] standard monophone recipe, we mod-
elled these tokens with 5-state ergodic HMMs [33]. Silences
were modelled with 5 state left-to-right skip HMMs. As a post-
processing step, we merged identical labels that were separated
by a silence with less than 100ms. A second pass of the data
then removed labels with duration less than 50ms.

To measure the accuracy of this method, we used the force-
aligned transcriptions of the UXTD’s test set as a ground truth.
We estimated error using pyannote.metrics [34], computing er-
ror in terms of seconds. We observed an Identification Error
Rate of 4.6%, and precision and recall of 0.969 and 0.979, re-
spectively. We decoded the three datasets with this method,
which forms the basis for the data reported in Table 3.

Phone labelling: Automatically identifying phones in a
child’s speech would significantly reduce the workload for an
SLT. As an initial solution, we applied standard phone align-
ment to the data. To obtain additional training data, we pooled
the training subset of UXTD and the PF-STAR corpus [35], and
trained a phone alignment model following the PF-STAR base-
line recipe presented in [15].

Using our pronunciation dictionaries, we substituted the
words in the prompts and audio transcriptions with their pho-
netic transcriptions for utterances of types A, B, and C. We then
aligned the waveforms to the transcriptions in UXTD, and to
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Table 3: Hours of speech and silence rounded to two decimal
places, estimated using the speaker labelling method described
in Section 4, with percentages given in parentheses.

UXTD UXSSD UPX

Child speech 2.24 (28.39%) 3.66 (34.45%) 7.27 (38.70%)
SLT speech 1.24 (15.74%) 1.81 (16.99%) 1.92 (10.23%)
Total speech 3.47 (44.12%) 5.47 (51.43%) 9.19 (48.93%)

Initial silence 1.41 (17.96%) 0.91 (8.55%) 0.78 (4.17%)
Medial silence 1.99 (25.30%) 3.48 (32.69%) 7.11 (37.83%)
Final silence 0.99 (12.61%) 0.78 (7.32%) 1.70 (9.07%)
Total silence 4.40 (55.88%) 5.16 (48.57%) 9.59 (51.07%)

Total audio 7.87 10.63 18.78

the prompts in UXSSD and UPX since transcriptions are not
available for these two datasets. Disordered speech is therefore
aligned to expected pronunciation rather than true pronuncia-
tion.

Although we used standard methods to obtain phone align-
ments, these datasets pose significant challenges. Besides well
known difficulties associated with child speech processing [14]
and disordered speech processing [17], additional issues include
variability in the recording conditions, interaction between the
therapist and child, and deviations from the prompts. Future
work will investigate more robust methods for phone alignment
and ways of evaluating them.

5. Data Statistics
Overall, the data contains 37.28 hours of synchronised audio
and raw ultrasound across all datasets. Table 3 shows the distri-
bution of audio in terms of speech (child and SLT) and silences
(utterance initial, medial, and final), estimated using the speaker
labelling method described in Section 4. Although our speaker
labelling method achieved good results on UXTD’s test set, it
was not directly evaluated on articulatory tasks or disordered
speech. An inspection of the assigned labels in the data showed
missed cases of child speech, especially when decoding utter-
ances of type D. The estimates of speech shown in Table 3 are
therefore conservative.

We estimated a total of 18.67 hours of speech in the three
datasets. Despite this being a conservative estimate, it is com-
parable to the number of hours of speech in the standard child
speech corpus PF-STAR, which has 10 hours of read speech by
native English speaking children aged 6-11, and 10 additional
hours of spontaneous speech by native English speaking chil-
dren aged 4-14 [35]. We preserve initial and final silences in
the data as the corresponding ultrasound may be useful for other
tasks, such as tongue contour extraction. We estimated 91.83,
14.02, and 28.25 minutes of child speech for the training, de-
velopment, and testing subsets of the UXTD dataset.

6. Companion Code Repository
We distribute a code repository containing a set of tools to inter-
pret, transform and visualise the data, in addition to the recipes
used to annotate the data. We describe the current contents of
the code repository and invite users to contribute their own code.

Tools: The repository contains raw ultrasound reflection
data, but we provide a set of tools to transform it for visuali-
sation. A raw ultrasound file is a sequence of 2D matrices (or
a 3D array) where each matrix is a frame, and each column in

Figure 1: An ultrasound image showing the midsagittal view of
a child’s tongue. We store the raw ultrasound reflection data
efficiently as a matrix (left), but provide a tool to transform it to
real world proportions (right).

a frame contains ultrasound reflection data of a single scanline.
To correctly interpret the ultrasound data, we provide a tool to
transform the raw representation to the real world proportions.
The function interpolates the spaces between the scanlines and
the result is visualised as a fan image. Figure 1 illustrates this
process. Another tool produces a sequence of images or a video
from a raw ultrasound file.

Recipes: We release the Kaldi recipes which we used to
train the speaker and phone labelling models.

7. License and Distribution
We distribute UltraSuite under Attribution-NonCommercial 4.0
Generic (CC BY-NC 4.0) and distribute the companion code un-
der Apache License v.2. Both can be obtained from the project
website: http://www.ultrax-speech.org/ultrasuite

8. Conclusions and Future Work
We have introduced a new repository of ultrasound and acous-
tic data which we have collected from child speech therapy
sessions. We have described the process of data collection,
preparation and standardisation, along with a suggested train-
test split. We have described tools to transform and visualise the
data, and annotations including pronunciation dictionaries, au-
dio transcriptions, SLT annotations, automatic speaker labelling
and automatic phone alignments.

We will continue to grow the repository by adding more
data and tools. We are in the process of collecting further data
from 120 children with SSD in the Ultrax2020 project follow-
ing the protocol described in [36]. In addition, we intend to add
other available data to our repository, including adult data and
alternative forms of articulatory imaging techniques (e.g., MRI
of vocal tracts), all of which can be used in data augmentation
methods [17, 15, 10]. We encourage other researchers to con-
tribute by submitting their data for us to standardise and add to
this repository.
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