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Abstract
In order to separate individual sources from convoluted speech
mixtures, complex-domain independent component analysis
(ICA) is employed on the individual frequency bins of time-
frequency representations of the speech mixtures, obtained us-
ing short-time Fourier transform (STFT). The frequency com-
ponents computed using STFT are separated by constant fre-
quency difference with a constant frequency resolution. How-
ever, it is well known that the human auditory mechanism offers
better resolution at lower frequencies. Hence, the perceptual
quality of the extracted sources critically depends on the separa-
tion achieved in the lower frequency components. In this paper,
we propose to perform source separation on the time-frequency
representation computed though constant Q transform (CQT),
which offers non uniform logarithmic binning in the frequency
domain. Complex-domain ICA is performed on the individual
bins of the CQT in order to get separated components in each
frequency bin which are suitably scaled and permuted to obtain
separated sources in the CQT domain. The estimated sources
are obtained by applying inverse constant Q transform to the
scaled and permuted sources. In comparison with the STFT
based frequency domain ICA methods, there has been a consis-
tent improvement of 3dB or more in the Signal to Interference
Ratios of the extracted sources.
Index Terms: source separation, complex-valued ICA, con-
stant Q transform, non uniform logarithmic binning.

1. Introduction
Blind Source Separation (BSS) is the task of separating indi-
vidual sources from recorded mixtures without using any prior
knowledge about either the source signals or the mixing pa-
rameters. The statistical independence between the sources
has been exploited in independent component analysis (ICA)
to achieve source separation [1]. Several measures of nongaus-
sianity have been proposed to extract statistically independent
sources [2]. In the case of instantaneous mixtures, ICA can be
directly applied in the time domain to extract the sources, as
a direct correspondence is maintained between respective sam-
ples in the mixtures [3]. However, in the case of convolutive
mixtures, the sources signal are convolved with the impulse re-
sponse of acoustic path between the source and the microphone
before getting added, and are given by

xi[n] =
N∑

j=1

∑

τ

aij [τ ]sj [n− τ ], for i = 1, 2, . . .M (1)

where xi[n] denotes the ith mixture signal,M denotes the num-
ber of mixture signals, sj [n] denotes jth source signal, N de-
notes the number of source signals, and aij [n] denotes the im-
pulse response along the acoustic path between jth source and
ith mixture. As a result, time-domain ICA cannot be readily

extended to the convolutive mixtures because of every sample
in the mixture signal is related to multiple samples in the source
signals.

The convolutive mixture in (1) can be written as
multiple instantaneous mixtures in the time-frequency (TF) do-
main [4] [5] as

X[k, l] = A[k]S[k, l] for k = 1, 2, . . .K (2)

where X[k, l] = [X1[k, l] X2[k, l] . . . XM [k, l]]T is the
vector of time-frequency representations of the mixtures
in kth frequency bin of the lth time frame, S[k, l] =

[S1[k, l] S2[k, l] . . . SN [k, l]]T is the vector of TF representa-
tions of the source signals, A[k] = Aij [k] is matrix of kth

coefficients in the frequency domain representation of aij [n],
K is the number of frequency bins and L is the number of time
frames. Notice that in this formulation the mixing matrix A[k]
is assumed to be independent of time, and hence is valid only
for stationary speakers.

Short-time Fourier transform (STFT) is typically
used to compute the TF representations of the mixture signals
Xj [k, l] in (2) [6]. The frequency components computed us-
ing STFT are separated by constant frequency difference with
a constant frequency resolution. However, it is well known that
human auditory mechanism has better resolution at lower fre-
quencies than at higher frequencies [7]. Hence, the perceptual
quality of the separated sources depend on the degree of sep-
aration in the lower frequency bands, which can be achieved
by choosing a TF representation with higher resolution at low
frequency bands. In this paper, we propose to use constant-
Q transform (CQT) to compute the time-frequency representa-
tions in (2). The CQT offers better resolution at low frequen-
cies, and thus prevents spectral smearing in the low frequency
regions [8]. The advantage of CQT is it’s ability to adopt win-
dow sizes based on the frequency bin, i.e. longer analysis win-
dow for low frequency bins, and shorter analysis windows in
high frequency bins [9]. As a result, the length of the analy-
sis window need not be adjusted in the TF representations ob-
tained through CQT. On the other hand, the performance of the
STFT based methods critically depends on the size of the anal-
ysis window, which should be in the same range of the length of
the impulse response of the acoustic path. The CQT has been
used along with Degenerate Unmixing Estimation Technique
(DUET) for separation of sources from under-determined mix-
tures [10].

Since all the terms in (2) are in complex domain,
we need to apply complex-valued ICA [11] in order to es-
timate the source signals S[k, l], and mixing matrix A[k] in
the frequency domain. Most of the ICA algorithms such as
robust ICA [12], INFOMAX [13], complex Entropy Bound
Minimization (CEBM) [14] are based on the estimation of un-
mixing matrix Wk such that the extracted sources denoted by
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Y[k, l] = [Y1[k, l] Y2[k, l] . . . YN [k, l]]T given by,

Y[k, l] = WH
k X[k, l] (3)

are maximally independent, or equivalently maximally non-
gaussian. Mutual information, which can be explicitly ex-
pressed in terms of higher order statistics, is a straight forward
measure to quantify the degree of independence between the
random variables [15]. However, the resulting contrast func-
tions may not be robust and efficient. Nonlinear contrast func-
tions, which implicitly embed the higher order statistics into
the algorithm, have emerged as an alternative measure for non-
gaussianity [16]. It has been proved that the extrema of the ar-
bitrary nonlinear contrast functions coincide with the indepen-
dent components. The choice of the nonlinear contrast func-
tion depends on the probability distribution of the source sig-
nal. For example, maximizing the nonlinear contrast function
of the form 1/(1+z2) leads to estimation of source signals that
closely follow Cauchy distribution. For the case of speech sepa-
ration, the choice of the contrast function should depend on the
spectral characteristics of the speech in a particular frequency
bin. In this paper, we present a detailed performance analysis
of four different contrast functions for blind speech source sep-
aration.

Since the complex-valued ICA is applied indepen-
dently on each of the frequency bins, the resulting spectral com-
ponents of the estimated source signals suffer from permutation
and scaling issues [17]. Several attempts have been made to
address the issue of permutation by using direction of arrival
of source signals [18], correlation of the envelopes of the esti-
mated weight vectors across the frequency bins [19], and cor-
relations between bin-wise power ratios of STFT coefficients
of signals [20]. In this paper we propose to use the temporal
correlations across frequency bins to correct the permutation.
The within source average of the correlation coefficients, com-
puted between pairs of frequency bins, should be higher than
across-source average of the correlation coefficients. The ratio
of within source to across source averages is used iteratively
to arrive at the correct source ordering. The performance of
the proposed CQT based method is found to be better than the
conventional STFT based methods under different reverberant
conditions.

The rest of the sections in this paper are organized
as follows. A detailed description of the proposed algorithm
is given in section 2. Section 3 presents the evaluation of the
proposed algorithm and respective improvements in the perfor-
mances. Conclusions are presented in section 4.

2. Complex ICA in CQT domain
2.1. Motivation

In this section, we describe the CQT approach for BSS. Hu-
man auditory mechanism shows constantQ characteristics from
500Hz to 20kHz [7]. Generally speech is phonetically more
dominant at low frequencies and hence low frequency compo-
nents are better resolved by the ear [21]. So, giving emphasis to
the low frequency components can be of greater aid for intelli-
gibility. In order to emphasize only the low frequency compo-
nents more, non uniform binning needs to be carried out which
cannot be done with STFT approach. Hence we consider the
approach of CQT, through which non uniform binning can be
achieved. Fig. 1 shows the sequence of steps that have been
adopted in the proposed algorithm for BSS.

Mixture 1 Mixture 2 

CQT CQT

Complex Domain ICA 

Permutation and Scaling 

Gammatone Post Processing 

ICQT ICQT

Estimated  
Source 1

Estimated  
source 2

Figure 1: Block diagram of the proposed algorithm

2.2. The CQT TF representation

The STFT of the signal x[n] using a window wf [n] is defined
as follows [22],

X[k] =

Nf−1∑

n=0

wf [n]x[n]e
−j 2π

Nf
kn

(4)

where X[k] is kth spectral component, Nf point discrete
Fourier transform (DFT) and digital frequency 2πk/Nf . Thus
there exists a linear spacing of TF bins. In order to provide a non
uniform binning and an improved low frequency resolution, we
adopt CQT. The CQT of the signal x[n] is defined as follows:

X[k] =
1

Nf [k]

Nf [k]−1∑

n=0

wf [k, n]x[n]e
−j 2πQ

Nf [k]
n

(5)

The digital frequency in this case turns out to be Q 2π
Nf [k]

. If the

kth spectral component is denoted by fk, it can be formulated
as,

fk = (2
1
b )kfmin (6)

where number of bins per octave is denoted by b. The parameter
Q is defined as the ratio of central frequency to the bandwidth
which can be formulated as follows,

Q =
fk

∆fk
=

fk
fk+1 − fk

=
1

2
1
b − 1

(7)

But this Q transform is non-invertible. We need an invertible Q
transform in order to convert estimated sources back to time do-
main. Hence to have an invertible CQT, we have considered the
approach of CQT developed in the context of non stationary Ga-
bor transform (CQ-NSGT) where the inversion of the transform
has been achieved by the introduction of dual frames, where
frame is an orthonormal basis generalization [23]. For this pur-
pose, a non stationary Gabor filter bank with constant Q factor
in every bin is developed whose bandwidth (BW) is defined as
follows,

BW = α ∗ fk + γ (8)

where
α = 2

1
b − 2

−1
b (9)
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where the parameter γ is the BW offset. If the offset is greater
than zero, the BW of the filter increases which leads to an im-
proved resolution towards low frequencies. Since complex ICA
requires a TF representation, except for the highest frequency
channel, rest of the channels are sampled at the same sub sam-
pling rate.

In order to ensure perfect reconstruction, the DC fre-
quency and higher frequency components are also considered in
CQT-NSGT at the same computational cost unlike the conven-
tional CQT approach.

2.3. Complex ICA

ICA is applied on mixtures which uses CQT to get the estimated
sources. In this paper, we have adopted a computationally effi-
cient approach where nonlinear estimators are utilized to exploit
the higher order statistics [24]. The function that has been con-
sidered for optimization is given by,

JG(w) = E[G(|wHX|2)] (10)

where w is the unmixing weight vector to be esti-
mated. We have adopted four different nonlinearities G(z) such
as
√

0.1 + z, 1
(0.1+z)

, tanh(z) and z2/2.

By considering the constraint ‖w‖2 = 1, the opti-
mal points of above function are computed as shown below,

5E[G(|wHX|2)]− β 5 E[(|wHX|2)] = 0 (11)

The second term can be approximated using a jaco-
bian matrix and then the above equation is solved using new-
ton’s method. On further simplification, a more compact ver-
sion of the iterative weight update equation is obtained which is
given as,

w+ = E[X(wHX)∗g(|wHX|2)]− E[g(|wHX|2)

+(|wHX|2)(g
′
(|wHX|2))]w

(12)

where g() is derivative of G() and g
′
() is deriva-

tive of g(). The updated weights are then normalized. In order
to solve for the scaling issue, we need to adjust estimated un-
mixing weight matrices Wk such that they have determinant of
unity [4].

Wk
new = Wk

original.|Wk
original|

−1
N (13)

After obtaining the estimated source frequency bins, they are
suitably permuted in order to align them in the corresponding
source channels. In order to permute the bins, envelope corre-
lation coefficient approach has been considered. To depermute,
we define an envelope correlation coefficient [25] which is for-
mulated as,

ρij [k, l] =

∑Q
q=1 vi[k, q]vj [l, q]√∑Q

q=1 v
2
i [k, q]

√∑Q
q=1 v

2
j [l, q]

(14)

where k and l are two adjacent frequency bins and
vi[k, :] = |Yi[k, :]| (: is a Matlab convention adopted to denote
all the elements in a row) is the amplitude envelope of the ith

extracted source output of complex ICA. For instance, consid-
ering a 2 microphone and 2 speaker scenario, the alignment can
be done by defining a constant ζ such that ,

ζ[k, l] =
ρ11[k, l] + ρ22[k, l]

ρ12[k, l] + ρ21[k, l]
(15)

If ζ[k, l] is greater than one, it implies that the adjacent bins
along the same channel are correlated more and need not be
permuted and vice verse. After resolving the permutation and
scaling issues, the extracted sources are post processed before
converting back to time domain using Gammatone filterbank
[26] in order to reduce the perceptual artifact and provide a bet-
ter enhancement which is described in the following section 2.4.

2.4. Post processing using Gammatone filter bank

In order to reduce the perceptual artifact in the extracted
sources, channel weighting technique have been applied [27].
Initially binary masks are created by applying MAP criterion to
each of the TF locations of the extracted sources. If we consider
the two extracted sources as y1[n]) and y2[n] and β is a thresh-
old, then the binary mask µ(k, l) is constructed as follows,

µ[k, l] =

{
1 + ε if |Y1[k, l]| > β ∗ |Y2[k, l]|
ε if |Y1[k, l]| < β ∗ |Y2[k, l]| (16)

where ε corresponds to the noise floor in order to reduce the
effects of musical noise [28]. After construction of the binary
mask, channel weighting technique has been applied to convert
the binary mask to continuous mask. The channel weighting
coefficients at a TF location can be obtained by computing the
ratio of power at a TF bin after binary mask application to the
original input power at the mth gammatone frequency channel
as shown below. The extracted sources are then enhanced using
the above obtained channel weighting coefficients as follows,

ŵ[m, l] =

∑K
2
k=0 µ[k, l] |Ya[k, l]H[k,m]|2
∑K

2
k=0 |Ya[k, l]H[k,m]|2

(17)

where Ya[k, l] is the spectral average from both the extracted
sources, K denotes the number of spectral points andH[k,m] is
the frequency response of the mth gammatone filter. Enhanced
spectrum Ŷ [k, l] is given by

Ŷ [k, l] =

M
′−1∑

m=0

(
√
ŵ[m, l]Ya[k, l]H[k,m]) (18)

where total number of gammatone filter banks is denoted byM
′

and Ŷ [k, l] is the extracted source after post processing in TF
domain. The above same procedure is repeated for binary mask
1 − µ[k, l] to get another source. The extracted sources can
be obtained by converting them from time frequency domain
back to time domain. In order to reconstruct them back to time
domain, Inverse constant Q transform (ICQT) is applied to the
estimated source frequency bins.

3. Performance Evaluation
In order to evaluate the performance of the proposed al-
gorithm, we have considered a two microphone and two
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Table 1: Comparing the SDR and SIR values of extracted sources from speech + speech mixture with reverberation of 0.2s.

Metric Source PARAFAC algorithm 1/(0.1 + z) tanh z
√

0.1 + z z2/2
STFT CQT STFT CQT STFT CQT STFT CQT

SIR(dB) male 13.07 16.4 15.4 12.9 13.17 10.91 15.04 10.91 15.02
female 7.91 14.03 14.33 15.76 14.54 15.37 13.72 15.16 13.53

SDR(dB) male -18.31 2.95 2.97 0.06 0.02 -0.11 2.96 -0.19 1.43
female -22.4 1.47 1.46 2.99 2.93 3.01 1.43 2.94 2.94

Table 2: Comparing the SDR and SIR values of extracted sources from speech + speech mixture with reverberation of 0.4s.

Metric Source PARAFAC algorithm 1/(0.1 + z) tanh z
√

0.1 + z z2/2
STFT CQT STFT CQT STFT CQT STFT CQT

SIR(dB) male 11.07 14.58 14.25 5.53 7.28 5.68 14.29 14.62 14.01
female 0.39 7.71 9.46 13.24 12.415 13.15 8.79 8.08 8.66

SDR(dB) male -18.8 -4.6 -4.34 -9.26 -9.27 -9.26 -4.33 -4.56 -4.48
female -27.4 -6.68 -6.72 -4.31 -4.08 -4.29 -6.72 -6.63 -6.63

speaker scenario. We have adopted the cases of speech-
speech mixtures generated from artificial room impulse re-
sponses (RIRs) [29] with a reverbaration of 0.2s and 0.4s.
All the original sources and mic recordings were ob-
tained from http://www.telecom.tuc.gr/˜nikos/
BSS_Nikos.html. The original sources have been sampled
at 16 kHz. The Sources have been extracted using the four non
linearities that have been mentioned. For the purpose of evalua-
tion, source extraction has been done using both STFT and CQT
TF representations. Signal to Distortion Ratios (SDR) and Sig-
nal to Interference ratios (SIR) have been adopted as metrics
in order to compare the TF representations and the values have
been tabulated in Table 1 and Table 2.

For extracting the sources using STFT time fre-
quency representation, we have experimented over various win-
dow lengths to get the best performance and a window length of
0.128s i.e. 2048 samples has been chosen for both reverberation
times of 200 ms and 400 ms. The overlap factor has been taken
as 0.75 and number of FFT points were taken to be equal to the
window length. The parameters of constant Q transform have
to be fixed beforehand, and for the current evaluation the mini-
mum frequency to be analyzed has been fixed at 100Hz and the
maximum frequency to be analyzed has been fixed at half the
sampling frequency i.e. 8 kHz. The number of bins per octave
were taken to be 100 and windowing is done using hamming
window. The same parameters have been considered for both
the cases of 200 ms and 400 ms. The CQT has been computed
using CQT matlab toolbox [30] [31]. SIRs have been evalu-
ated using BSS EVAL toolbox [32]. The SIRs and SDRs for
the sources extracted using PARAFAC algorithm [33] have also
been computed using BSS EVAL toolbox by comparing against
the original sources. In order to perform post processing using
Gammatone filter bank, the total number of filters have been
taken to be 64. To compensate for the trade off between the
intelligibility and quality of the extracted sources, the threshold
for constructing the binary mask has been fixed at β = 1.

We have evaluated the performance of the proposed
approach against various source separation algorithms other
than PARAFAC such as PARARA [34] which exploits the non
stationarity property of the sources through least square opti-
mization , Time frequency BSS method [20] in which extrac-
tion is done by clustering of the mixtures in TF domain using
angle between a reference and sample vector. The proposed ap-
proach has also shown a good performance under high reverber-

Table 3: Comparison of SIR(dB) values against various source
separation algorithms for speech + speech mixtures having re-
verbaration time of 200 ms and 400 ms.

Algorithm speaker 200 ms 400 ms

PARARA [34] male 8.49 1.77
female 11.08 6.2

TF domain bss [20] male 16.32 9.09
female 13.62 5.63

PARAFAC [33] male 13.07 11.07
female 7.91 0.39

CQT approach male 15.4 14.25
female 14.33 9.46

ant conditions. The results have been tabulated in Table 3.We
can observe that emphasizing the low frequencies using CQT
results in significant enhancement in the extracted sources in
comparison with STFT based methods which is clearly evident
in the improved SIRs and SDRs. A part of improvement in
SDR can also be attributed to gammatone post processing as
the perceptual artifact has been reduced. In order to reduce
the effects of musical noise, a small amount of noise floor is
added to the binary mask and then processed [28]. As a result
of this, speech intelligibility can be preserved. On the other
hand, addition of greater magnitude of noise floor degrades the
speech quality. Hence an optimal value of noise floor has to
be chosen to preserve both the intelligibility as well as qual-
ity of the extracted sources. For the current evaluation it has
been set to ε = 0.003. The results can be found at https:
//sites.google.com/a/iith.ac.in/bss_demo/

4. Conclusions

The main objective of this paper is to get a better enhanced ver-
sion of the extracted sources from recorded convolutive mix-
tures through constant Q TF representation. Non uniform bin-
ning of the mixtures has been achieved through this approach
which aids in the emphasis of the corresponding low frequency
components. The performance has been tested over different re-
verberant conditions and over various bss algorithms. From the
experimental results, we find that the approach has exhibited a
good performance also under high reverberant conditions.
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