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Abstract
We consider the problem of deep mixture of experts based
speech enhancement. The deep mixture of experts, where ex-
perts are considered as deep neural network (DNN), is difficult
to train due to the network structure. In this work, we propose a
pre-training method for individual DNN in deep mixture of ex-
perts. We use hard expectation maximization (EM) to pre-train
the individual DNNs. After pre-training, we take a weighted
combination of outputs of individual DNN experts and jointly
train the whole system. We compare the proposed method with
single DNN based speech enhancement scheme. Speech en-
hancement experiments, in four SNR conditions, show the su-
periority of the proposed method over the baseline scheme. The
average improvements obtained for four seen noise cases over
single DNN scheme are 0.08, 0.59 dB and 0.015 in terms of
objective measures viz perceptual evaluation of speech quality
(PESQ), segmental signal to noise ratio (seg SNR) and short
time objective intelligibility (STOI) respectively.
Index Terms: Deep neural networks, Hard expectation maxi-
mization, Speech enhancement

1. Introduction
Speech enhancement has been an important field of research
for several decades as it plays a prominent role in many appli-
cations such as speech communication, automatic recognition
system, hearing aids etc. [1]. The goal of speech enhancement
is to suppress the noise in a noisy speech recording keeping the
speech distortion to a minimum level.

Neural networks have emerged as powerful tools for many
artificial intelligence tasks providing promising results. Their
ability to capture complex variations in the input data makes
them attractive for many applications including speech en-
hancement. Initially shallow networks were trained [2–4] to
directly estimate clean speech from noisy spectrum. However,
the objective function of neural network is typically non convex
and complex to optimize. Due to lack in sophisticated compu-
tational resources and optimization techniques, such networks
did not provide satisfactory results. In recent years, various
techniques have been proposed [5–7] for better and faster train-
ing of neural networks. These modifications resulted in sig-
nificant improvement in many areas including speech recogni-
tion and image recognition. Following the technique proposed
in [5], a restricted Boltzmann machine (RBM) [8] was trained
to initialize a deep neural network (DNN) for speech enhance-
ment. Such an approach resulted in significant improvements in
speech enhancement under training (seen) noise cases.

As an extension, multiple DNNs have been used for speech
enhancement. These techniques can be broadly categorized as
multiple experts in a more general context. There are many
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speech enhancement techniques where multiple experts are
used. For instance, a mixture maximum model was proposed
by Amit et al. [9], which is based on broad phoneme classes.
However, it requires prior enhanced Mel frequency cepstral co-
efficient (MFCC) vectors specific to each phoneme, which re-
duces its generalizability across different speakers and also with
respect to the intra broad phoneme class variability. Chazan
et al. [10] employed phoneme information based pre-training
method where forty DNNs (one for each phoneme class) and a
classifier network were used to estimate speech presence proba-
bility (SPP). A separate DNN was pre-trained for each phoneme
class to predict SPP, following which all the DNNs are trained
jointly to estimate the overall SPP. Such a system outperformed
single DNN based system in many test cases.

Instead of relying on phoneme labels, in this work, we ex-
plore a different groups of acoustic units that can be learnt in
a data-driven manner to achieve an improved speech enhance-
ment performance. We note that Chazan et al. [11] discussed the
possibility of using generalized expectation maximization (EM)
algorithm (we refer this variant of EM algorithm as soft EM) to
train multiple DNNs instead of using phoneme labels. They
also discussed the problems associated with such an approach.
Specifically, they mention training complexity and convergence
problems. In this work we try to solve those problems with a
variant of EM algorithm viz hard EM. We propose to use task
specific one epoch hard EM based pre-training of the multiple
DNN system. In the scope of current work, the specific task
refers to estimating clean spectrum from noisy one. The max-
imization step in each EM iteration (corresponding to parame-
ters of DNN) is run just for one epoch. After each epoch, the
data is redistributed among different DNNs in order to facilitate
better estimation of clean speech. Following the work in [10],
we combine these pre-trained DNNs, and train jointly. The pro-
posed modification is found to reduce the training complexity,
also results in simpler objective function. In addition, the pro-
posed technique is found to outperform the baseline schemes
viz single DNN, deep mixture of experts (dMoE) with soft EM
based pre-training, dMoE without pre-training.

We use log spectrum as the target output instead of SPP
in the proposed work. In the SPP based method, the noisy
spectrum is assumed to be the sum of clean and noise spec-
tra [10] which may not hold good at low SNRs. We assume that
direct noisy spectrum to clean spectrum mapping could over-
come this limitation. We conduct experiments using TIMIT (for
clean speech utterances) [12] and Aurora (for noise signals) [13]
databases. The number of noise types used for training is four.
For testing, five unseen noise types are used in addition to these
four seen noises. We consider four SNR conditions. Follow-
ing the work of [9], we, in this work, use objective evaluation
measures instead of any subjective assessment. We evaluate the
proposed algorithm in terms of objective measures viz percep-
tual evaluation of speech quality (PESQ) [14], segmental signal
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to noise ratio (seg SNR) and short time objective intelligibility
(STOI) [15]. We observe that the proposed method performs
better than the baseline schemes in most of the cases especially
for seen noise types at every SNR considered and unseen noise
cases at high SNRs.

2. Deep mixture of experts
Deep mixture of experts (dMoE) is a special case of mixture of
experts where the experts employed are DNNs. As shown in
Fig. 1, the output of such a system ŷ is given by,

ŷ =
N∑

q=1

pq(x)fq(x), (1)

where x is an input to the system, fq(x) is the output of the
qth expert and pq(x) is the corresponding weightage given by
the gating network, N is the number of experts (DNNs). In
the scope of current work, x, ŷ correspond to the log spectra
of noisy speech and predicted clean speech respectively. When
such a system is trained with input and target data, we expect
to reduce the error (E) between the predicted and original one,
i.e., the following objective function has to be minimized.

E =
1

M

M∑

i=1

d
(
yi,

N∑

q=1

pq(xi)fq(xi)
)
, (2)

where yi is ith clean speech log spectrum, xi is the correspond-
ing noisy one, M is the total number of training examples con-
sidered and d() is an error metric like mean square error or mean
absolute error etc. However, it has been noted that employing
such an objective function may not converge sometimes espe-
cially as the complexity of the system increases [10]. Hence,
Chazan et al. proposed to pre-train the individual DNNs [10] us-
ing phoneme information. In [11], the possibility of pre-training
without using phoneme information has been discussed. Al-
though it is not defined as pre-training, we, in the following sub-
section, show that it can be used as pre-training with required
modifications and use these pre-trained DNNs to jointly train
the whole system to minimize the objective function in eq. 2.

Figure 1: Block diagram of dMoE

2.1. Training using soft EM:

Chazan et al. [11] discussed the possibility of using soft EM
to train dMoE. The problem considered involved estimation of

probability values viz SPP. In this work, we consider estima-
tion of log spectrum of clean speech unlike probability value.
Hence, the analysis of training dMoE using soft EM presented
here is slightly different. The log likelihood function to be max-
imized for such a system is given by,

L(θ) =
M∑

i=1

log p(yi|xi; θ) =
M∑

i=1

log
N∑

q=1

p(yi, q|xi; θ), (3)

where q is the latent variable (the underlying DNN expert) and
θ are the parameters of the overall system. The parameters can
be decomposed as, θ = [θ1, θ2 . . . θN , θc], where θq (with q ∈
{1, 2, . . . , N}) are the parameters of qth DNN expert and θc
are the parameters of the gating network. For the considered
problem i.e., the estimation of log spectrum of clean speech, we
define (for notational simplicity we drop the subscript index i
for further analysis and consider single example case. The same
analysis can be extended to M number of training examples),

p(y|x, q; θq) ∝ λ exp
(
− λ ‖ y − fq(x; θq) ‖2

)
, (4)

where fq(x; θq) is the output of the qth DNN, and λ is the decay
parameter which is fixed. The likelihood in eq. 3 can be max-
imized (with respect to θ) through EM algorithm (also known
as soft EM). The expectation step Q at iteration t+ 1 given the
parameters of the iteration t i.e., θt is as follows,

Q(θ; θt) ∝ Ep(q|x,y;θt)
[
log p(y|x, q; θq) + log p(q|x; θc)

]

(5)
Considering all M training examples, the first term in eq. 5 can
be written as (termed as QI ),

QI ∝ −
M∑

i=1

N∑

q=1

p(q|xi, yi; θt) ‖ yi − fq(xi; θq) ‖2, (6)

Note that we expanded the expectation and substituted for
p(yi|xi, q; θq) from eq. 4. Even though the analysis presented
here is slightly different from that in [11], the problems asso-
ciated with soft EM approach as discussed in [11] remain here
as well – there is no closed form expression to perform max-
imization task. In addition, it may get stuck in local maxima
if we simply maximize using stochastic gradient ascent [11].
Such maximization task is also computationally expensive [11].
However, we propose to use just one epoch training in the maxi-
mization step. We hypothesize that such modification can over-
come the limitation discussed in [11]. We have to note that
modified algorithm will still converge since increasing the aux-
iliary function is sufficient for the convergence of the EM algo-
rithm [16]. However, with such a modification, soft EM based
pre-trained dMoE doesn’t provide really good results compared
to single DNN approach. This could be due to the complicated
objective function, i.e., as seen in eq. 6 the error on each ex-
ample (xi, yi) is weighted by p(q|xi, yi; θt). In addition, even
though we are training for one epoch, the training complexity is
still high because each DNN has to be trained with entire data
during each epoch.

2.2. Proposed method:

As discussed in previous section, the soft EM suffers from in-
herent problems when applied to training multiple DNN sys-
tems. To solve these problems, we propose not to use the
weights, i.e., p(q|xi, yi; θt) as in eq (6), to weigh each sample,
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rather aim to optimally select the expert DNN for each training
sample separately (referred to as hard labeling of each sample
with expert DNN index). We observe that such a setting auto-
matically comes from starting with a different objective func-
tion given by (which, in literature, is known as the hard expec-
tation maximization - hard EM [17]),

θ∗ = argmax
θ

max
q

M∑

i=1

log p(yi, qi|xi; θ) (7)

where q = [q1, q2, . . . qM ] with qi ∈ {1, 2, . . . N} and

p(yi, qi|xi; θ) = p(yi|xi, qi; θqi)p(qi|xi; θc) (8)

In most of the analysis presented henceforth, qi and q (which
is not same as q) can be interchanged (since it doesn’t affect)
except when finding the optimum latent variable for each data
point, in which case the variable used is qi like in eq. 7. The
goal of the hard EM algorithm is to find optimum values of θ
and q which maximizes eq. 7. The maximization task can be
done by co-ordinate ascent method. In co-ordinate ascent we
alternately optimize each variable keeping remaining variables
fixed. The steps of the hard EM typically uses a co-ordinate
ascent algorithm [17]. These are summarized below. Note that
these steps are adapted from [17] with required modification
for dMoE. The algorithm is as follows,

Initialize the parameters θ0 and repeat the following steps until
RHS of eq. 7 converges.

(I) Find the optimum latent variables qt+1 =
[qt+1

1 , qt+1
2 , . . . qt+1

M ] at iteration t+ 1 given θt as follows,

qt+1 = argmax
q

M∑

i=1

log p(yi, qi|xi; θt), (9)

which can be decoupled as,

qt+1
i = arg max

qi∈{1,2,...N}
p(yi, qi|xi; θt), 1 ≤ i ≤M (10)

(II) Find the optimum parameters θt+1 =
[θt+1

1 , θt+1
2 , . . . , θt+1

N , θt+1
c ] given qt+1 as follows,

θt+1 = argmax
θ

M∑

i=1

log p(yi, q
t+1
i |xi; θ), (11)

which can be decoupled as training of individual DNN experts
and classifier DNN separately, i.e., ∀q ∈ {1, 2, . . . , N},

θt+1
q = argmax

θq

∑

i:qt+1
i =q

log p(yi|xi, q; θq) (12)

= argmin
θq

∑

i:qt+1
i =q

‖ yi − fq(xi; θq) ‖2, (13)

The eq. 13 is obtained by substituting eq . 4 in eq. 12 for each
example considered. Note that Eq. 13 corresponds to training
of individual DNN experts separately with data points that have
been assigned from eq. 10 (i.e., from step (I)). The classifier
training is as follows,

θt+1
c = argmax

θc

M∑

i=1

p(qt+1
i |xi; θc) (14)

Since the maximum value possible for p(qt+1
i |xi; θc) is 1, the

desired distribution over qi ∈ {1, 2, . . . N} at iteration t+1 for
each example is given by,

pt+1
0 (qi|xi) =

{
1, if qi = qt+1

i

0, otherwise
(15)

Thus the optimization strategy is to minimize the distance be-
tween the distributions p(qi|xi; θc) and the one given in eq.
(15). In the proposed work, we use KL divergence.

θt+1
c = argmin

θc

M∑

i=1

KL(F t+1
i ||Gi), (16)

where F t+1
i = pt+1

0 (qi|xi) and Gi = p(qi|xi; θc)

After hard EM based pre-training, we combine the out-
puts of the pre-trained DNNs as given in eq. (1) and jointly
train the whole system with new objective function given in eq.
(2).

3. Experiments
To conduct experiments, we use TIMIT [12] and Aurora 2 [13]
databases for clean speech and noise recordings respectively.
TIMIT database is divided into train and test categories con-
taining 4620 and 1680 clean speech utterances respectively
with sampling rate of 16kHz. The noise recordings are babble,
restaurant, street, airport, car, exhibition, subway and train with
sampling rate of 8kHz. Hence, we down sample clean speech
recordings to 8kHz. In addition, we use additive white Gaussian
(AWGN) noise for the experiments.

We use the noise recordings namely babble, restaurant,
street and AWGN (these four noises are seen noises and re-
maining noises are unseen noises) for training and validation
purposes following the work in [18]. All the utterances in train
category in the TIMIT database are added with the above men-
tioned noise types at four different SNR levels, −5 dB, 0 dB,
5 dB and 10 dB. The frame length and frame shift are set to be
256 samples and 128 samples respectively. From the resulting
frames, we randomly select 100k examples per configuration
(each noise type at particular SNR). Thus we have a total of
105 × 4 × 4 frames. We divide this data in 8 : 2 ratio (From
each configuration, 80k and 20k frames) for training and vali-
dation. The testing is done on 250 TIMIT test sentences under
above mentioned training noise cases at different SNRs. To test
the generalization performance, we also evaluate on the remain-
ing five noise types (not used in training).

We evaluate our method with the number of DNNs in dMoE
set to be N = 2 with each DNN having three hidden layers.
The number of units at each layer is set to be 1024. We use relu
activation at the hidden layers and output activation is linear.
We refer this system as M-DNNP2. In similar way, we build a
soft EM based pre-trained dMoE and also dMoE without pre-
training of individual DNNs. These two systems are referred as
M-DNNS2 and M-DNNJ2 respectively.

To compare methods performance under different number
of DNNs we implement proposed method with N = 4, & 8 in
addition to N = 2. These variants are referred as M-DNNP4

and M-DNNP8 respectively. To maintain total number of pa-
rameters similar as compared to N = 2 system, we set the
number of units at each hidden layer to be 512 and 256 respec-
tively for N = 4 and N = 8. Note that, the gating network in

3256



seen cases unseen cases
PESQ seg SNR (dB) STOI PESQ seg SNR (dB) STOI

-5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB
S-DNN1 2.19 2.53 2.79 2.99 0.47 1.97 3.41 4.68 0.708 0.796 0.853 0.888 1.78 2.10 2.41 2.72 -2.93 -0.67 1.51 3.36 0.587 0.718 0.816 0.876
S-DNN2 2.19 2.53 2.77 2.96 0.39 1.92 3.40 4.73 0.717 0.799 0.853 0.886 1.76 2.08 2.39 2.69 -3.01 -0.76 1.50 3.51 0.580 0.715 0.815 0.875

M-DNNJ2 2.22 2.57 2.84 3.05 0.59 2.10 3.59 4.93 0.718 0.804 0.862 0.898 1.78 2.10 2.42 2.74 -2.79 -0.66 1.53 3.52 0.591 0.720 0.821 0.884
M-DNNS2 2.22 2.56 2.83 3.04 0.54 2.05 3.49 4.81 0.716 0.804 0.864 0.900 1.77 2.08 2.40 2.73 -2.84 -0.70 1.44 3.33 0.587 0.720 0.823 0.887
M-DNNP2 2.24 2.59 2.87 3.11 0.70 2.39 4.08 5.70 0.720 0.810 0.869 0.907 1.79 2.11 2.44 2.79 -2.96 -0.54 1.94 4.19 0.590 0.725 0.829 0.894
M-DNNP4 2.23 2.58 2.86 3.10 0.68 2.34 4.00 5.49 0.721 0.810 0.869 0.907 1.77 2.11 2.45 2.78 -2.85 -0.48 1.90 4.00 0.592 0.727 0.830 0.894
M-DNNP8 2.18 2.55 2.86 3.11 0.57 2.28 3.98 5.58 0.718 0.808 0.869 0.907 1.77 2.11 2.46 2.80 -2.83 -0.46 1.97 4.16 0.594 0.728 0.831 0.894

Table 1: Comparison of proposed method with baselines for seen and unseen noise cases. Blue numbers indicate the best performing
scheme. Blue numbers indicate the best performing scheme. We also present evaluation of proposed method with N = 4, & 8. The
entries in the last two rows are marked in red if either of them achieves better performance than M-DNNP2.

the above mentioned different dMoEs has similar architecture
as that of individual experts except the activation at the output
layer is set to be SoftMax.

A single DNN based baseline is implemented following the
work of Xu et al. The DNN consists of three hidden layers with
1024 units at each layer. We refer single DNN based enhance-
ment scheme as S-DNN1. We also implement single DNN with
number of units at each layer set to be 2048, to make sure that
it has similar number of parameters as that of proposed mul-
tiple DNN system. This variant is referred as S-DNN2. We
did not report SPP based speech enhancement performance as
it performed poorly in most of the SNR cases considered.

We use batch normalization [7] and dropout [19] (with p =
0.2) between the hidden layers. The number of epochs for each
DNN training is set to be 50 with early stopping criteria [20].
Note that the total number of epochs includes both pre-training
followed by joint training (no. of epochs for pre-training + no.
of epochs for joint training = 50) for hard EM and soft EM
based approaches. However, for M-DNNJ2, S-DNN1 and S-
DNN2 systems, it is 50 for the entire joint training (no pre-
training). We use adam optimizer with default parameters [21]
for the optimization. The loss function used is mse. The input
data is normalized to have zero mean and unit variance. All the
experiments are implemented in python using a deep learning
library called keras [20].

We compare the different schemes in terms of PESQ, seg
SNR and STOI scores. PESQ is a measure of perceptual quality
of speech, while STOI measures the intelligibility. seg SNR
provides information about average reconstruction error across
frames with respect to the clean speech. Hence, these measures
are used to objectively evaluate the enhanced speech.

4. Results and discussion
The results of different methods considered are shown in Table.
1. The numbers presented here are average values over seen
noises and unseen noises at different SNRs considered. For seen
noise cases, we see that the proposed method (M-DNNP2) out-
performs the baselines considered for input SNRs -5, 0, 5, and
10 dB in most cases in terms of PESQ, seg SNR and STOI. In
specific, the improvement is more at 5 and 10 dB SNRs. This
can be attributed to the fact that at high SNRs the underlying
structures are more distinguishable resulting in more accurate
output of the classifier network. Note that single DNN system
performed better than the proposed method for white noise at
SNR -5 dB in terms of objective measures PESQ and seg SNR.
In a similar fashion, we observe prominent improvement at 5
and 10dB SNRs for unseen noise cases and the performance is
similar to single DNN at -5 dB SNR.

4.1. Dependency on the number of DNNs

The number of DNNs used plays an important role in the per-
formance of the system. As we increase the number of DNNs
with the number of units at hidden layers fixed, the complexity
of the system increases. Hence, it results in overfitting. How-
ever, we can overcome this problem in some cases by reducing
the number of units. As a reference we present the performance
variation of our method with respect to the number of DNNs
(N = 2, 4, & 8) as shown in last three rows of the Table. 1.
We observe almost similar results for these three variants. As
we increase the number of DNNs further, we didn’t see much
improvement and we also observe decrease in performance for
some cases.

4.2. Dependency on the decay parameter

The decay parameter can be seen as the variance of the predicted
output. As we increase the decay parameter the error on the
training data decreases but it performs poorly on unseen test
data. However, the choice of the decay parameter depends on
the expected error range of the objective function. We observe
that the suitable range of the decay parameter for the considered
objective function is 6− 8.

4.3. Training complexity

The proposed method, in effect, divides the data among differ-
ent DNNs at each iteration. amount of time required is N (the
number of experts) times more than hard EM approach, since
each experts is trained with the entire data (with weightage for
each sample) at each iteration. Thus, the time complexities of
the pre-training procedures for soft EM and hard EM are of
O(N) and O(1) respectively, given the same amount of data.

4.4. The distribution of data points

After hard EM based pre-training of the dMoE, we check
how data points corresponding to each phoneme are distributed
among the individual DNN experts. We notice that all the noisy
frames belonging to white and babble noise at SNR -5 dB are
assigned to one DNN. Other than that, we observe no particular
pattern in the assignment of data points.

5. Conclusion
We proposed a hard expectation maximization based pre-
training method for dMoE. Such system outperforms single
DNN schemes and dMoE trained jointly without pre-training.
The current work can be extended based on different probabilis-
tic models for each expert that better suits speech data. In addi-
tion we can also put constraint on the objective function based
on speech knowledge (similar to having a prior). These are parts
of our future works.
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