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Abstract
Recurrent neural network (RNN)-based language models are
widely used for speech recognition and translation applica-
tions. We propose a gated hierarchical recurrent neural network
(GHRNN) and apply it to the character-level language model-
ing. GHRNN consists of multiple RNN units that operate with
different time scales, and the frequency of operation at each
unit is controlled by the learned gates from training data. In
our model, GHRNN learns the hierarchical structure of char-
acter, sub-word, and word. Timing gates are included in the
hierarchical connections to control the operating frequency of
these units. The performance was measured for Penn Treebank
and Wikitext-2 datasets. Experimental results showed lower bit
per character (BPC) when compared to simply layered or skip-
connected RNN models. Also, when a continuous cache model
is added, the BPC of 1.192 is recorded, which is comparable to
the state of the art result.
Index Terms: recurrent neural network, language model, hier-
archical structure

1. Introduction
Language models (LMs) estimate the probability distribution
over sequence of words or characters, and they are essential for
speech recognition, machine translation, and text generation [1,
2, 3]. LMs can be classified into character-level LM (CLM)
and word-level LM (WLM) according to the token set of the
input and output. LM estimates the probability of the token x
appearing at time t, P (x), or

∏
P (xt | x<t), which means the

output depends on the previous input tokens. Recurrent neural
networks (RNNs), which are known to be suitable for handling
sequences, achieve very good results for LM benchmarks [4,
5, 6]. Among RNNs, long short-term memory (LSTM)[7] and
gated recurrent unit (GRU) models [8] are widely used because
of their overall performance and trainability [9].

An RNN-based LM consists of an embedding layer, recur-
rent layers, and a softmax layer. The embedding layer is a look-
up table that converts an input token to a fixed size vectors. The
RNN part uses the fixed size input vector and its own past infor-
mation to predict the next token. The softmax layer is composed
of a linear layer and a softmax function [10].

In the copy task experiments [7, 11], the RNN structure was
shown to memorize the past information very well. However, it
is not known whether the RNN is capable of preserving long-
term information and estimating the probability distribution at
the same time. Many studies have been conducted to maintain
long-term information in RNN by employing the hierarchical
structure. A hierarchical structure that operates in multiscale is
proposed in [12]. The hierarchy is organized in such a way that

the upper layer maintains the past information of the lower layer
while the lower layer generates new information. Some studies
have attempted to preserve information through a temporal hi-
erarchy formed by linking distant inputs or states [13]. A CLM
that uses the word boundary as a clock signal for better utilizing
the word level information was proposed in [14]. These stud-
ies indicate that the information retention capacity of RNN is
limited and also show that the performance of an RNN can be
improved through structural modification.

In this paper, we propose gated hierarchical recurrent neu-
ral networks (GHRNNs) for keeping long-term information. A
GHRNN implementation for CLM consists of four LSTMs.
Three of them are hierarchically connected for preserving long-
term contexts, while the remaining one utilizes the output of
these three LSTMs for prediction. We place a gate between hi-
erarchically connected LSTMs, and the gate controls the change
of information in the LSTMs. Depending on the gate value, the
LSTM either preserves previous information, accepts new infor-
mation, or mixes those two. The hierarchical structure and gate
allow GHRNN maintain long-term information, and GHRNN
shows performance gain utilizing that information. We evaluate
our model on CLM task,where Penn Treebank dataset [15] and
Wikitext-2 dataset [16] are used for evaluation.

This paper is organized as follows. We revisit previous
works on hierarchical RNNs in Section 2. The proposed models
are described in Section 3. The experimental results are shown
in Section 4, and the concluding remarks are given in Section 5.

2. Hierarchical RNN based LMs
We describe seven hierarchical structure based LMs, which
are clockwork RNN (CW-RNN), dilated RNN, hierarchical
character-level LM (HCLM), hierarchical LSTM (HLSTM),
hierarchical multiscale RNN (HM-RNN), bi-scale RNN (bi-
RNN), and fast-slow RNN (FS-RNN) models. [17, 13, 18, 14,
12, 19, 6]. These hierarchical models can be classified into three
groups according to their clock generation scheme such as fixed
time steps, explicit steps, and automatic steps. Dilated RNN and
CW-RNN form a hierarchy using fixed-rate clocks. HCLM and
HLSTM use explicit boundary information, such as characters
and words, to make each layer behave differently. On the other
hand, HM-RNN and bi-RNN employ neither the fixed time step
nor the specific boundary information. Instead, clocks are auto-
matically generated according to the current input and internal
state.

CW-RNN divides the hidden state of an RNN layer into sev-
eral modules and assigns a different time scale to each module
[17]. As shown in Fig. 1a, each module can receive an informa-
tion from other modules only if its time scale is faster than the
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Figure 1: The hierarchical structure of (a) CW-RNN, (b) Dilated
RNN, (c) HLSTM, and (d) HM-RNN.

other ones. The i-th module is updated at every 2i-th time step.

Dilated RNN, shown in Fig. 1b, preserves long-term in-
formation through a temporal hierarchy [13]. Each layer of the
dilated RNN is connected to a state that is temporally distant.
The temporal distance of the higher layer is farther than that of
the lower ones.

HLSTM, shown in Fig. 1c, consists of character-level and
word-level RNNs, and the former operates with the character
clock while the latter does with the explicit word clock [14].
The input and output are character tokens, thus this model is
a CLM supplemented with WLM for long term context predic-
tion. This model shows quite high performance when compared
with a basic RNN based CLM, and has no out of vocabulary
problem. Both character and word clocks are needed. HCLM
works with word-level information, but employs an input CLM
for word embedding generation from character input, and an
output CLM for character output generation from word-level
probability distribution [18].

HM-RNN, shown in Fig. 1d, introduces a ‘boundary de-
tector’ that allows the model to automatically find the hierar-
chical structure of the sequence [12]. Each layer of HM-RNN
conducts one of UPDATE, COPY, and FLUSH operations de-
pending on the boundary detector value. The upper layer of
the HM-RNN generates a sequence boundary whose period is
longer than that of the lower layer. Especially, as a CLM, it
shows character-, word- and n-gram- level hierarchy.

Bi-RNN has a hierarchical structure that operates accord-
ing to the gate value [19]. The bi-RNN layer employs two gates
that generate the hierarchical output. The gate values modify
the hidden states of bi-RNN and create two different states con-
nected to the next time step.

FS-RNN contains fast and slow layers, which forms two-
level hierarchy [6]. The fast layer operates more than once per
time step and the slow layer operates only once at each time
step. Only the slow layer is connected to the past information,
and the fast layer receives information from the slow layer and
predicts the next character.
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Figure 2: GHRNN structure. This example shows gate values
are 0. Therefore, LSTM-S and LSTM-W are inactivated

3. Model
Our proposed model uses LSTM as a basic building block. The
LSTM operates according to the following formula.

it = σ(W ixt + U iht−1 + bi)

ft = σ(W fxt + Ufht−1 + bf )

ot = σ(W oxt + Uoht−1 + bo)

c̃t = tanh(W cxt + Ucht−1 + bc)

ct = it � c̃t + ft � ct−1

ht = ot � tanh(ct),

(1)

where W (·) and U (·) are the weight matrices, b(·) is the bias
vector, it, ft and ot are the input gate, forget gate and output
gate at time t, respectively. σ(·) is the sigmoid function and �
is the element-wise multiplication operator. ct is the cell state
and ht is the hidden state. These two states are delivered to the
next time step.

3.1. Gated hierarchical recurrent neural network
(GHRNN)

In this section, we explain the basic structure of GHRNN and
its operation. The GHRNN, shown in Fig. 2, consists of four
LSTMs, which are LSTM-C, LSTM-S, LSTM-W, and LSTM-P.
The LSTM-C receives the character embedding vector, and the
output is connected to the LSTM-S. The output of LSTM-S is
applied to LSTM-W. These three LSTM units can be interpreted
as encoding character-level, sub-word-level, and word-level in-
formation. LSTM-P receives the concatenated vector of these
three LSTM outputs and estimates the probability distribution
of the next character. LSTM-C, LSTM-S, and LSTM-W gener-
ate hierarchical information by operating LSTM-S and LSTM-
W at different clock rates. The clock rates are determined by
the gates. Each LSTM of GHRNN operates according to Eq.
1. But the cell and hidden states of LSTM-S and LSTM-W are
changed according to the gates as follows.

ct = gt(it � c̃t + ft � ct−1) + (1− gt)ct−1

ht = gt(ot � tanh(ct)) + (1− gt)ht−1,
(2)

where gt is the scalar gate value. If gt is 0, the LSTM will retain
the value of the previous time step, t− 1 . This deactivation or
time skipping also gives a computational advantage. The gate
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value, gt, is calculated as follows.

gt = Hard tanh1
0(W

gvt + bg)

Hard tanh1
0(z) =





0 : z ≤ 0

z : 0 < z < 1

1 : z ≥ 1

(3)

Hard tanh1
0 is a hard tangent hyperbolic function that has mini-

mum value of 0. vt is a concatenated vector of two vectors; one
is the output vector of lower hierarchy and the other is the hid-
den state of the previous time step. In the case of LSTM-S, vt
is a concatenated vector of ht of LSTM-C and ht−1of LSTM-
S. For LSTM-W, vt is the concatenation of ht of LSTM-S and
ht−1 of LSTM-W.

3.2. binary-gated hierarchical recurrent neural network
(bGHRNN)

In the previous section, we define the gate value as a continuous
value. If we constrain the gate value to be a binary number,
the gates behaves like clock signals. We also propose a binary-
GHRNN (bGHRNN) that can reduce computational cost more
than GHRNN. GHRNN is deactivated only when the gate value
is 0 but bGHRNN skips the operation when the gate value is
less than 0.5. Therefore, the operating frequencies of LSTM-S
and LSTM-W are further reduced. A binary-gate value, clock,
is decided as follows.

clockt = binarize(gt)

binarize(a) =

{
0 if a < 0.5

1 if a ≥ 0.5

(4)

Although the binary-gate can reduce the computational cost of
LSTM, it can not mix past and current information because the
gate value is a binary number. This reduces the ability to main-
tain a long-term context.

3.3. Training with boundary hints

When training GHRNN, we add the following boundary loss
for the first ten epochs to help GHRNN to learn the sub-word
and word boundaries.

lossboundary =
1

T

T∑

t=0

{(gs,t −Bs,t)
2 + (gw,t −Bw,t)

2}, (5)

where gs,t and gw,t are the gate value of LSTM-S and LSTM-
W at time t, respectively, and Bs,t and Bw,t are the bound-
ary values of sub-word and word at time t. We employ byte-
pair-encoding (BPE) as the sub-word unit. BPE is an encoding
method that reduces the length of data by converting the most
frequently appearing two adjacent code to one new code [20].
This new code works as a sub-word [21]. The sub-word bound-
ary value is 1 at the last character of BPE code and 0 elsewhere.
The word-boundary value is 1 at every <space> token and 0
for the remainder. With this boundary loss, GHLSTM learns
the gate operation during the first ten epochs and fine-tunes it
during the remaining training epochs. We add the boundary
loss because the model rarely learns the boundaries in the rest
of the training if it cannot find them in the initial training phase.
The effect of adding boundary loss during the first a few epochs
is maintained until the end of training.

4. Experiments
The proposed GHRNN based CLMs are evaluated with two
text datasets: Penn Treebank dataset (PTB)[15] and Wikitext-
2 dataset (Wiki2) [16]. We train the models using Adam with
the default learning rate of 0.002 [25]. We use the batch size of
256 and the sequence length 128. We clip the norm of the gradi-
ent to 0.025 [26]. The models are regularized with the dropout
probability of 0.5 [27].

We use bit-per-character (BPC) as an evaluation metric,
which is defined as follows.

BPC = − 1

L

L∑

t=1

log2 P (ct | c<t), (6)

where L is the length of the test set and c<t =
{c1, c2, . . . , ct−1}

4.1. Penn Treebank dataset

We follow the common data preprocessing method suggested in
[28]. The PTB dataset consists of 50 types of characters and the
train, valid, and test sets contain 5.1M, 0.4M, and 0.4M charac-
ters, respectively. Table 1 shows BPCs of GHRNN, other hier-
archical models, and notable models conducted on the test set.
The BPCs of the models from CW-RNN to FS-RNN are based
on the performance reported in each reference and the BPCs
of the remaining models are measured in this experiment. ‘5-
layer stacked LSTM’ is the baseline model, which has a similar
amount of parameter size with simply stacking LSTM layers.
The ‘No gate HRNN’ has the same basic structure as GHRNN
but does not have gates between hierarchical connections. Thus
we can evaluate the performance effect of these gates by com-
paring GHRNN with this model. GHRNN consists of an em-
bedding layer of size 512, four LSTMs with 512 units in the
hidden layers, and a softmax layer of size 50. GHRNNs marked
with ‘256’ are the models whose sequence length is set to 256.
‘BH’ marks mean that the models are trained with the boundary
hint as mentioned in Section 3.3. When we apply a continuous
cache [29] on the best performing GHRNN, the model shows
the BPC of 1.192 which is the comparable result with the state
of the art FS-RNN model.

Table 1: CLM results on Penn Treebank dataset

Model BPC Parameter size

CW-RNN[17] 1.46 −
Zone out[22] 1.27 −

HyperLSTM[23] 1.27 4.9M
HCLM with cache[18] 1.247 −

LayerNorm HM-LSTM[12] 1.24 −
LayerNorm HyperLSTM[23] 1.23 5.1M

HyperRHN[24] 1.195 15.5M
FS-RNN[6] 1.190 7.2M

5-layer stacked LSTM 1.303 10.5M
No gate HRNN 1.247 10.5M

GHRNN 1.225 10.5M
GHRNN(seq256) 1.209 10.5M

GHRNN(seq256) with cache 1.192 10.5M
GHRNN-BH 1.226 10.5M

bGHRNN 1.248 10.5M
bGHRNN-BH 1.228 10.5M
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_ m o n d a y _ <eos> _ b u t _ w h i l e _
1 0.5304 0.5397 0.553 0.8189 0.6002 0.4919 1 0.5034 0.7724 0.5933 0.6085 0.4499 0.8022 0.5822 0.6198 0.3819 0.4224 0.3577 0.7102
1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1

t h e _ n e w _ y o r k _ s t o c k _ e
0.4962 0.5746 0.3119 1 0.6362 0.599 0.5696 0.7595 0.5188 0.2111 0.4709 0.3852 1 0.5366 0.595 0.3854 0.3588 0.3665 1 0.4423
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0.369 0.3048 0.3119 0 0.077 0.3317 0.3383 1 0.5359 0.6405 0.5529 0.92 0.5894 0.2776 0.2552 1 0.6921 0.5955 0.7875 0.7345

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
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1 0.4365 1 0.3227 0.6527 0.69 0.9903 0.5225 0.4458 0.5172 0.8246 0.5911 0.4521 0.9441 0.4327 0.5905 0.9022 0.421 0.5079 0.2624
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Figure 3: Gate values of the first 100 characters of PTB test set. <eos> token indicates end of sentence marker. <space> token is
replaced with ‘ ’ mark for readability.

We can consider ‘No gate GHRNN’ as a 4 layered model
with skip-connections. It shows a better result than the simply
layered model but is worse than the other GHRNNs. This com-
parison shows that the gates improve the performance.

When we compare GHRNN and GHRNN-256, we can find
that training with a longer sequence is advantageous. It also
means that GHRNN can preserve the long-term context and
make better prediction with it.

As observed in Table 1, using the binary gates lowers the
performance. However, bGHRNN shows comparable perfor-
mance to GHRNN when the boundary hint is given. We check
how much bGHRNN can reduce LSTM computation on PTB
test set. The bGHRNN reduces the amount of computation re-
quired to inference the test set by 21%.

GHRNN-BH shows similar performance to GHRNN, and
reduces LSTM calculation by 41%. Most of the reduction in
computation is due to LSTM-W. Fig. 3 shows gate values of
GHRNN-BH model on the first 100 characters of PTB test set.
Each row is listed in order of the input characters, the gate val-
ues of LSTM-S, and the gate values of LSTM-W. The gate value
of LSTM-W is 1 for <space> token and 0 for other characters.
We can consider that LSTM-W maintains the current word in-
formation until a new word comes in. The gate value of LSTM-
S appears mostly 1 at the <space> token because many BPE
codes end with a <space> token. In the PTB data set, of the
BPE codes that contain a<space> token, the BPE code ending
with a <space> token is 98%.

4.2. Wikitext-2 dataset

The Wiki2 dataset has been proposed to compensate for the
problems of PTB dataset that is limited to small word vocab-
ulary, lower case, and punctuation removal [16]. We use pre-
processed Wiki2 dataset [18]. Train, valid and test sets employ
255, 128 and 138 kinds of tokens, and contain 10.9M, 1.1M,
and 1.3M of characters, respectively.

As shown in Table 2, the GHRNN-BH model shows a bet-
ter result than the GHRNN model on Wiki2 dataset. It also
shows better performance than HCLM without cache. However,
when a cache is applied, both shows comparable performance.
The caching mechanism used in HCLM is a version of [29] for
open-vocabulary models. We consider the difference in perfor-
mance improvement is caused by different cache mechanisms
employed..

Table 2: CLM results on Wikitext2 dataset

Model BPC Parameter size

HCLM[18] 1.670 −
HCLM with cache[18] 1.500 −

GHRNN 1.600 10.5M
GHRNN with cache 1.519 10.5M

GHRNN-BH 1.590 10.5M
GHRNN-BH with cache 1.506 10.5M

5. Concluding remarks
In this paper, we propose the GHRNN (gated hierarchical re-
current neural networks) based CLMs. GHRNN has a hi-
erarchical structure and gates for maintaining long-term con-
texts. GHRNN consists of four LSTMs; three of which encode
character-level, sub-word level, and word-level contexts, while
the remaining LSTM uses the output of the other LSTMs to es-
timate the probability distribution of the next character. Two
gates are added to GHRNN and they coordinate the mainte-
nance of existing information and the introduction of new one.
In particular, if the gate is deactivated, the LSTMs associated
with it need not be computed. We evaluate the GHRNN perfor-
mance on PTB and Wiki2 dataset. When we apply a continuous
cache to GHRNN, the model shows BPC of 1.192, which is
comparable to the state of the art performance on PTB dataset.
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