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Abstract
This paper proposes a new method for weighting two-
dimensional (2D) time-frequency (T-F) representation of
speech using auditory saliency for noise-robust automatic
speech recognition (ASR). Auditory saliency is estimated via
2D auditory saliency maps which model the mechanism for
allocating human auditory attention. These maps are used to
weight T-F representation of speech, namely the 2D magnitude
spectrum or spectrogram, prior to features extraction for ASR.
Experiments on Aurora-4 corpus demonstrate the effectiveness
of the proposed method for noise-robust ASR. In multi-stream
ASR, relative word error rate (WER) reduction of up to 5.3%
and 4.0% are observed when comparing the multi-stream sys-
tem using the proposed method with the baseline single-stream
system not using T-F representation weighting and that using
conventional spectral masking noise-robust technique, respec-
tively. Combining the multi-stream system using the proposed
method and the single-stream system using the conventional
spectral masking technique reduces further the WER.
Index Terms: Time-frequency representation, auditory
saliency, multi-stream automatic speech recognition, noise ro-
bustness, spectral masking

1. Introduction
When there are environmental noises, word error rate (WER)
of automatic speech recognition (ASR) system often increases.
Various noise-robust ASR techniques were developed to im-
prove ASR system noise robustness. A profound overview of
noise-robust techniques for ASR is presented in a recent litera-
ture survey [1]. In [1], noise-robust ASR techniques were clas-
sified into 5 categories: (i) feature-domain vs. model-domain
techniques, (ii) techniques that exploit prior knowledge about
the signal distortion, (iii) techniques that incorporate an explicit
distortion model to predict the distorted speech from a clean
one, (iv) techniques using uncertainty in either model space or
feature space, and (v) techniques that use joint model training in
which environmental variability in the training data is removed
in order to generate canonical models.

Various noise-robust ASR techniques were developed in
the feature-domain of ASR system based on knowledge from
human auditory system, for instance the use of non-linear fre-
quency axis [2, 3, 4], the application of the principle of temporal
processing in frequency bands of speech signal [5, 6, 7], or the
use of spectro-temporal features [8, 9, 10]. A recent overview
of perceptually-motivated techniques for noise-robust ASR is
presented in [11].

Human auditory attention is one of the mechanisms which
help human to recognize better speech in noisy and adverse en-
vironments. In essence, auditory attention mechanism acts as
a selection process that focus both sensory and cognitive re-
sources on the most relevant events in the sound environment
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[12]. This selection process is a component of sensory attention
which provides weighted representation of our environment, bi-
asing perception towards salient events [13].

In this work, we propose a new method for noise-robust
ASR based on human auditory attention mechanism. In the pro-
posed method, a time-frequency (T-F) representation of speech
is weighted using an auditory saliency map (ASM) [13] which
models the mechanism for allocating auditory attention. The
ASM is a two-dimensional (2D) matrix which represents the
saliency at every location in a T-F representation of speech by
a scalar quantity to guide the selection of attended locations,
based on the spatial distribution of saliency [13, 14]. Weight-
ing the T-F representation of speech using the ASM is effec-
tively consistent with the fact that attention mechanism provides
weighted representation of the environment. We show the ef-
fectiveness of the proposed method in improving ASR noise ro-
bustness, especially in multi-stream ASR framework [15]. Ex-
periments are performed on Aurora-4 corpus [16] using Kaldi
speech recognition toolkit [17].

The paper is organized as follows. Section 2 presents prior
work related to the proposed method. In section 3, the algo-
rithm for computing the ASM is presented. The application of
auditory saliency in ASR is presented in section 4. Section 5
presents ASR experiments and section 6 concludes the paper.

2. Relation to prior work
Spectral masking is an approach aiming at weighting the T-F
representation of noisy speech in order to improve ASR noise
robustness [18, 19] and speech intelligibility for humans [20].
In the spectral masking approach, a weight matrix is computed
for a T-F representation of speech, for instance the spectrogram
or cochleagram. Each element of the 2D T-F representation,
or T-F unit, is multiplied with an element in the weight matrix.
Values of the elements in the weight matrix are either binary
[18, 21] or continuous [22, 23]. The binary values can be con-
sidered as a binary approximation of the continuous values. The
computation of the weight matrix is often based on energy of
clean speech and noise at each T-F unit.

Ideal binary mask (IBM) is a spectral masking technique
which uses a binary matrix as weight matrix. This is a typical
spectral masking technique for noise-robust ASR [18, 21]. In
the binary matrix, a value of 1 denotes that the speech energy
S(n, ω) in the corresponding T-F unit of the T-F representation
exceeds the noise energy N(n, ω) by a predefined threshold θ.
Here n represents a time frame and ω represents a frequency
band. A value of 0 in the binary matrix denotes otherwise.
More specifically, the binary matrix or binary mask B(n, ω)
is defined as

B(n, ω) =

{
1 if S(n, ω) −N(n, ω) > θ

0 otherwise.

The threshold θ is typically set to 0 corresponding to a local
signal-to-noise ratio (SNR) of 0 dB. Speech is expected to be
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segregated from noise by applying element-wise multiplication
of the binary mask with the T-F representation of noisy speech.
In realistic conditions where only noisy speech signal is known,
speech and noise signals are separated from the noisy speech
signal to estimate the binary mask. The 0s in the estimated bi-
nary mask (EBM) are often replaced with an alternative floor
valueα between 0 and 1 as this was found to improve the overall
performance [18, 21]. In this work, the EBM spectral masking
technique is used as one of the baselines for comparison with
the proposed method based on human auditory attention.

3. Auditory saliency map (ASM)
The ASM is a 2D matrix which represents the saliency at every
location in a T-F representation of speech by a scalar quantity
to guide the selection of attended locations, based on the spatial
distribution of saliency [13, 14]. The ASM extracts in parallel
features from speech signal which represent various levels of
sound feature analysis by auditory neurons [13]. These features
are believed to help human auditory system to detect sounds
of interest in a noisy environment [24]. In this respect, the
ASM uses different sets of filters to quantify sound intensity,
frequency contrast, and temporal contrast, and compares each
individual feature across scales using a center-surround mech-
anism and thresholding [13]. The feature maps created after
the comparison are normalized to obtain a feature-independent
scale. The ASMs for individual features are created by sum-
ming the feature maps at different scales. The overall ASM
is created by summing the individual ASMs, in analogy to the
idea of feature integration. This model was confirmed to repli-
cate basic properties of auditory scene perception by humans
[13]. The algorithm for computing the ASMs from individual
features is described in greater detail as follows.

Let X(n, ω) denotes the magnitude spectrum or spectro-
gram of a given speech signal. X(n, ω) is a 2D matrix
which is computed by applying a discrete Fourier transfor-
mation (DFT) to the speech signal on a frame-by-frame ba-
sis, and then taking the magnitude of the resulting 2D com-
plex spectrum. The log magnitude spectrum X̂(n, ω) is
computed as X̂(n, ω) = log(X(n, ω)). X̂(n, ω) is then
down-sampled by factors of 2k, k = 0, ...,K − 1 by us-
ing polynomial interpolation to create K log magnitude spec-
tra X̂0(n, ω), X̂1(n, ω), ...X̂K−1(n, ω). These log magnitude
spectra are then filtered by a 2D Gabor filter G(n, ω) to create
K 2D representations R0(n, ω),R1(n, ω), ...,RK−1(n, ω)

where Rk(n, ω) = X̂k(n, ω)∗G(n, ω), k = 0, ...,K−1. The
2D Gabor filter G(n, ω), which is product of a 2D sinusoidal
plane wave and a 2D Gaussian envelope [25], is used to approx-
imate the function of the auditory receptive fields [13, 26].

The differences between the representations Rk, k =
0, ...,K − 1 at different scales are then computed through a
center-surround mechanism to mimic the properties of local
cortical inhibition [27]. To this end, the 2D representations
Rk, k = 1, ...,K − 1 are first up-sampled by using poly-
nomial interpolation to have the same dimensions as the rep-
resentation R0 which has the same dimensions as the origi-
nal 2D magnitude spectrum X(n, ω). Element-wise subtrac-
tion is then computed between the up-sampled representations
R̂k, k = 0, ...,K−1 where R̂0 = R0. More specifically, given
a scale k, k = 0, ...,K−3, the difference is computed between
the up-sampled representations at scale k and scales k + 1 and
k + 2 to create two feature maps Fk,k+1 and Fk,k+2 as fol-
lows: Fk,k+1 = R̂k − R̂k+1 and Fk,k+2 = R̂k − R̂k+2. A

threshold is then applied on 2(K − 2) resulting feature maps to
keep only their positive values in the thresholded feature maps
F̂i, i = 0, ..., 2(K − 2) − 1.

The thresholded feature maps F̂i, i = 0, ..., 2(K − 2) −
1 are then normalized with respect to their local maxima [13,
14]. Given a feature map F̂i, the normalized feature map F̃i is
computed as F̃i = F̂i

Φ
(1 − ϕ̄)2 where Φ and ϕ̄ are two scalar

quantities representing the global maximum and the average of
the local maxima of the map, respectively. The ASM SG for
an individual feature, e.g. sound intensity, extracted with the
Gabor filter G is computed as sum of the normalized feature
maps: SG =

∑2(K−2)−1
i=0 F̃i. The algorithm for computing

the ASM SG, or individual ASM, is depicted in Fig. 1.

Figure 1: Algorithm for computing an individual auditory
saliency map (ASM) SG using one Gabor filter G.

In this paper, three different 2D Gabor filters are used in the
computation of three different individual ASMs. These filters
are similar to those used in the computation of the ASMs pro-
posed in [13]. Fig. 2(a), 2(b) and 2(c) show these three filters
GI,GF and GT which are used to extract features related to
sound intensity, frequency contrast and temporal contrast, re-
spectively. The individual ASMs computed by using GI,GF

and GT are denoted as SGI ,SGF and SGT , respectively. The
overall ASM SO is computed by summing the individual ASMs
SGI ,SGF and SGT as proposed in [13, 14]:

SO =
1

3
(SGI + SGF + SGT).

Figure 2: 2D Gabor filters for extracting features related to
intensity (GI), frequency contrast (GF), and temporal contrast
(GT) from the 2D magnitude spectrum of speech.

Fig. 3 shows examples of the log magnitude spec-
trum X̂(n, ω) together with the individual and overall ASMs,
SGI ,SGF , SGT and SO, computed from a noisy speech sig-
nal in the Aurora-4 corpus. The values of the elements in the
ASMs are in the range [0, 1]. In this work, a 1024-point DFT is
used to compute the 2D magnitude spectrum and K = 6 is the
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Figure 3: Examples of the log magnitude spectrum (a) and the individual and overall ASMs (b, c, d, and e) computed from a noisy
speech signal in the Aurora-4 corpus.

number of scales used in the computation of the ASMs as these
parameters provide better ASR performance. The ASMs have
the same dimensions as the magnitude spectrum.

4. Application of auditory saliency in ASR
The individual and overall ASMs SGI ,SGF , SGT and SO are
used to weight the 2D magnitude spectrum X(n, ω) prior to
features extraction for ASR. The weighting is done by element-
wise multiplication of each map with the 2D magnitude spec-
trum. Acoustic features for ASR are then computed from the
weighted magnitude spectrum matrix. In this work, Mel filter-
bank (FBANK) features [28], which are created by skipping
the discrete cosine transform (DCT) in the Mel frequency cep-
stral coefficients (MFCCs) [2] computation, are used. As there
is a log function within the FBANK features extraction which
is applied on the sums of the element-wise multiplication be-
tween the (weighted) magnitude spectrum and Mel-scale filter-
bank [2], the weighting prior to features extraction should be
performed with the linear scale magnitude spectrum, i.e with
X(n, ω). As a result, an exponential function is applied on the
ASMs to transform these maps to linear scale because they are
computed from the log magnitude spectrum X̂(n, ω).

4.1. Single-stream ASR

In single-stream hidden Markov model (HMM)-based ASR,
FBANK features are computed either from X(n, ω), X(n, ω)�
exp(SGI), X(n, ω) � exp(SGF), X(n, ω) � exp(SGT), or
from X(n, ω)� exp(SO) where � denotes element-wise mul-
tiplication. These FBANK features are then used during the
training of individual acoustic models and during testing of
single-stream ASR systems. In this work, convolutional neu-
ral networks (CNNs) [29] are used as acoustic models in hybrid
CNN-HMM ASR systems [30, 31].

In addition to the baseline single-stream system in which no
weighting is applied, i.e the system uses FBANK features com-
puted from the magnitude spectrum X(n, ω), a system using
the EBM spectral masking technique is used as another base-
line system (see section 2). In this system, the EBM B(n, ω) is
computed from a speech signal, then, it is used to weight the 2D
complex spectrum of the speech signal by element-wise multi-
plication. Subsequently, FBANK features can be computed ei-
ther from the magnitude of the weighted complex spectrum or
from the waveform re-synthesized from the weighted complex
spectrum which is a typical way of extracting features when the
EBM is used [18, 21]. In this work, FBANK features are ex-
tracted from the re-synthesized waveform.

For computing the EBM B(n, ω), noise-free and noise
DFT coefficients are estimated from a noisy speech signal. To
this end, noise-free DFT coefficients are estimated using a mini-
mum mean-square error (MMSE) estimator [32] which depends
on the noise power spectral density (PSD) estimated by a PSD

tracking algorithm proposed in [33]. Noise DFT coefficients
are estimated as the difference between the noisy DFT coeffi-
cients and the noise-free DFT coefficients due to the linearity
of the Fourier transform [33]. Once the noise-free and noise
DFT coefficients are estimated, the EBM B(n, ω) can be com-
puted (see section 2) and used to weight the complex spectrum
of noisy speech. The 0s in the binary masks are replaced with an
alternative floor value α between 0 and 1 [18, 21]. In the present
work, α = 0.9 was found to give better ASR performance than
other values of α.

4.2. Multi-stream ASR

Multi-stream ASR combines information from different speech
recognition streams to improve ASR performance [15]. The
combination of different ASR streams can exploit particu-
lar strength of each technique, for instance acoustic features,
used in each stream. The combination can be performed
at features level, output of acoustic models level or lattices
level [34]. In this work, the single-stream CNN-HMM ASR
systems are combined together in the multi-stream CNN-
HMM ASR framework. Each single-stream ASR system uses
FBANK features computed either from X(n, ω), X(n, ω) �
exp(SGI), X(n, ω) � exp(SGF), X(n, ω) � exp(SGT), or
from X(n, ω) � exp(SO) (see section 4.1). The single-stream
system applying the EBM technique is also used. The combi-
nation is performed either at the output of the CNN acoustic
models or at the output of the decoding (see Fig. 4).

Figure 4: Multi-stream ASR with combination performed either
at the output of the acoustic models which are CNNs or at the
output of the decoding. S is the number of streams.

Posterior probabilities of tied triphone HMM states [31]
produced by the CNN acoustic models can be combined by us-
ing a number of methods. Here we apply the inverse entropy
combination [35] which is one of the effective methods for com-
bining posterior probabilities. In this method, the weight allo-
cated to the posterior probabilities produced by a CNN acous-
tic model is proportional to the inverse entropy of that acous-
tic model which characterizes its discriminative capacity [35].
Prior probabilities of tied triphone HMM states are subtracted
in log domain from the combined posterior probabilities to get
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the scaled log-likelihoods [30] which are subsequently used for
decoding. The combination can also be performed on the lat-
tices obtained after the decoding. In this work, lattices are com-
bined based on Bayes risk minimization [36] which is an effi-
cient method for lattices combination [37]. Equal weights are
allocated to the systems used in lattices combination.

5. ASR experiments
5.1. Speech corpus

ASR systems are trained and evaluated using Aurora-4 corpus
[16]. Aurora-4 is a medium vocabulary task based on the Wall
Street Journal (WSJ0) corpus. The multi-condition training set
consists of 7137 utterances from 83 speakers. The speech ut-
terances in the multi-condition training set are both clean and
noisy. The noisy utterances were created by corrupting clean
speech utterances by six different noises (airport, babble, car,
restaurant, street, and train) at 10-20 dB signal to noise ratio
(SNR). The evaluation set was derived from WSJ0 5K-word
closed-vocabulary test set which consists of 330 utterances spo-
ken by 8 speakers. This test set was recorded by a primary
Sennheiser microphone and a secondary microphone. 14 test
sets were created by corrupting these two sets by the same six
noises used in the training set at 5-15 dB SNR. These 14 test sets
can be grouped into 4 subsets: clean, noisy, clean with channel
distortion, noisy with channel distortion, which will be referred
to as A, B, C, and D, respectively. All the data used for the
experiments in this paper are sampled at 16 kHz.

5.2. ASR systems

The acoustic models are CNNs consisting of 7 hidden layers,
with the first two layers are convolutional layers followed by
five fully-connected layers. The convolutional layers used 1-
dimension filters, applying convolutions and max-pooling on
the frequency axis. Acoustic features for training CNNs are
40-dimensional FBANK features, extracted from 25 ms win-
dows every 10 ms, together with their delta and acceleration
coefficients. The features are spliced with 5 frames on each
side of the current frame. Utterance-level mean normaliza-
tion is performed on static features. Multi-condition training
data are used. The first convolutional layer has 128 filters of
size 8. It is followed by a max-pooling layer with pooling
size of 3 and a pooling step of 3, and then, a second convo-
lutional layer. The second convolutional layer has 256 filters
of size 4. The output of the second convolution layer is passed
to 5 fully-connected hidden layers. Each fully-connected hid-
den layer has 2048 nodes. The output layer consists of 2298
nodes which are the number of tied triphone HMM states. The
state-level alignments for training all the CNN acoustic mod-
els are obtained from a speaker adaptive training (SAT) HMM-
GMM system, trained on multi-condition training data using
MFCCs features. The CNN acoustic models are trained with
back-propagation algorithm [38] based on cross-entropy crite-
rion. The task-standard WSJ0 bi-gram language model is used
for training and decoding. Experiments are performed using the
Kaldi speech recognition toolkit [17].

5.3. Results

WERs of single-stream ASR systems are shown in Tab. 1. Con-
sidering the average WERs which are the average of 14 WERs
on 14 individual test sets, the system using the SGT weight-
ing provides relative WER reduction of 2.4% and 1.1% com-
pared to the baseline system 1 not using weighting and the base-
line system 2 using the EBM spectral masking technique, re-

Table 1: WERs of single-stream baseline systems and of systems
using ASMs weighting.

System
Condition A B C D Avg.

Baseline 1 (no weighting) 4.22 7.35 7.94 18.89 12.11
Baseline 2 (using EBM) 3.94 7.32 8.03 18.57 11.95
Weighting using SGI

4.04 7.37 7.70 18.88 12.09
Weighting using SGF

4.00 7.60 8.28 19.03 12.29
Weighting using SGT

3.94 7.22 7.23 18.51 11.82
Weighting using SO 4.11 7.39 7.98 18.62 12.01

Table 2: WERs of multi-stream ASR systems using posterior
probabilities combination. The weighting techniques used in the
combined single-stream systems are separated with commas.

Combination
Condition A B C D Avg.

SGI
, SGF

, SGT
3.87 7.05 7.64 18.18 11.63

SGI
, SGF

, SGT
, SO 3.87 6.99 7.53 18.06 11.55

SGI
, SGF

, SGT
, SO, EBM 3.85 6.98 7.49 17.92 11.48

Table 3: WERs of multi-stream ASR systems using lattices
combination. The weighting techniques used in the combined
single-stream systems are separated with commas.

Combination
Condition A B C D Avg.

SGI
, SGF

, SGT
3.89 6.93 7.19 18.16 11.54

SGI
, SGF

, SGT
, SO 3.83 6.87 7.34 18.04 11.47

SGI
, SGF

, SGT
, SO, EBM 3.81 6.81 7.23 17.91 11.38

spectively. When single-stream systems using the SGI , SGF

and SGT weighting are combined in multi-stream systems, the
WERs of the multi-stream systems are reduced (see Tabs. 2 and
3). These WERs are further reduced when the system using the
SO weighting is included.

Lattices combination seems provide lower WER while hav-
ing a higher decoding cost than posterior probabilities combina-
tion. Relative gains of 5.3% and 4.0% WER are obtained with
lattices combination of 4 single-stream systems using three in-
dividual ASMs and one overall ASM, compared to the baseline
system 1 and the baseline system 2, respectively. This fact sug-
gests that the weighting realized by the individual and overall
ASMs are complementary to each other to improve ASR per-
formance. Combining lattices of the systems using the ASMs
weighting and that using the EBM technique provides relative
gains of 6.0% and 4.8% WER compared to the baseline system
1 and the baseline system 2, respectively.

6. Conclusion
This paper proposed a new method for weighting T-F represen-
tation of speech using auditory saliency for noise-robust ASR.
The proposed method is inspired from and consistent with the
human auditory attention mechanism which weights representa-
tion of environment to bias the perception towards salient events
[13]. When being applied in multi-stream ASR framework, rel-
ative gains of up to 5.3% and 4.0% WER were observed when
comparing the multi-stream system using the proposed method
with the baseline single-stream system not using weighting and
that using the conventional EBM spectral masking technique,
respectively. Combining the multi-stream system using the pro-
posed method and the single-stream system using the EBM
spectral masking technique reduced further the WER.
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