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Abstract
In the non-parallel Voice Conversion (VC) with the Iterative
combination of Nearest Neighbor search step and Conversion
step Alignment (INCA) algorithm, the occurrence of one-to-
many and many-to-one pairs in the training data will dete-
riorate the performance of the stand-alone VC system. The
work on handling these pairs during the training is less ex-
plored. In this paper, we establish the relationship via inter-
mediate speaker-independent posteriorgram representation, in-
stead of directly mapping the source spectrum to the target spec-
trum. To that effect, a Deep Neural Network (DNN) is used to
map the source spectrum to posteriorgram representation and
another DNN is used to map this posteriorgram representation
to the target speaker’s spectrum. In this paper, we propose to
use unsupervised Vocal Tract Length Normalization (VTLN)-
based warped Gaussian posteriorgram features as the speaker-
independent representations. We performed experiments on a
small subset of publicly available Voice Conversion Challenge
(VCC) 2016 database. We obtain the lower Mel Cepstral Dis-
tortion (MCD) values with the proposed approach compared
to the baseline as well as the supervised phonetic posterior-
gram feature-based speaker-independent representations. Fur-
thermore, subjective evaluation gave relative improvement of
13.3 % with the proposed approach in terms of Speaker Simi-
larity (SS).

Index Terms: Vocal Tract Length Normalization, Posterior-
gram, Deep Neural Network, Voice Conversion.

1. Introduction
Voice Conversion (VC) is a technique that modifies the speech
signal uttered by a source speaker in such a way that it perceives
as if it was uttered by a particular target speaker [1]. The spec-
tral features from both the source and target speakers need to be
aligned during training, due to the speaking rate variation across
the speakers (i.e., interspeaker variations) and speech rate vari-
ations within the speaker (i.e., intraspeaker variations), in order
to apply stand-alone VC techniques [1]. Dynamic Time Warp-
ing (DTW) [1] and the unsupervised Iterative combination of
Nearest Neighbor search step and Conversion step Alignment
(INCA) [2,3] algorithms are popular, in the area of parallel (i.e.,
both speakers have spoken same utterances) and non-parallel
(i.e., both speakers have spoken different utterances) VC, re-
spectively. Both the alignment techniques will generate one-
to-many and many-to-one feature pairs as studied in [2, 4]. In
addition, if the word spoken by a source speaker is repeated
by the target speaker with different variations, it will generate
such pairs. Furthermore, if the same word is repeated for sev-
eral times, it will result in the different speech pattern. This also
generates such kind of pairs. Directly learning the relationship

in the presence of such pairs is very challenging. These one-
to-many and many-to-one pairs will affect the learning of the
mapping function and results in the muffling and oversmooth-
ing effect in VC [5].

The earlier approaches used context-dependent information
to overcome this issue [5]. Recently, equalizing formant loca-
tions using Dynamic Frequency Warping (DFW) was proposed
to tackle these issue [6]. In addition, some of the approaches
proposed to filter out such pairs from the training [7, 8]. How-
ever, loosing number of pairs will not be useful in the case
where the amount of training data is small. There is also an
attempt in past to use pre-stored speakers parallel data to train
initial model in the case of non-parallel [9]. Furthermore, adap-
tation [10, 11] and the model-based [12–15] approaches have
been proposed to avoid alignment step, which also help to solve
one-to-many pairs-related issues. Recently, Phonetic Posterior-
gram (PPG) (which are believed to be speaker-independent rep-
resentations) have been proposed that consider two-stage map-
ping [16, 17]. However, it requires a huge amount of labeled
speech data to train the Automatic Speech Recognition (ASR)
systems for estimating PPG. Since the training data is small in
most of the applications of non-parallel VC. Hence, we pro-
pose to exploit unsupervised technique for computing speaker-
independent posterior features.

We propose to avoid alignment step by using the two sepa-
rate Deep Neural Networks (DNNs) where one DNN will map
source speaker’s spectral features to the speaker-independent
representations and the another DNN will map these speaker-
independent representations to the particular target speaker’s
spectral features. Here, we propose to use unsupervised Vocal
Tract Length Normalization (VTLN)-based warped Gaussian
Posteriorgram (GP) features as the speaker-independent repre-
sentations. Earlier stand-alone VTLN and frequency warping-
based techniques were used in the VC [18, 19]. We performed
experiments on a small subset of publicly available first Voice
Conversion Challenge (VCC) 2016 database [20]. We found
that in non-parallel scenarios, our proposed approach is work-
ing better or comparable in terms of the objective and subjective
evaluations for the developed VC systems.

2. Speaker-Independent Posterior
Representations

Earlier Gaussian Mixture Model (GMM) posteriorgram and
PPG were used as features for phoneme classification and tem-
plate matching-based ASR [21–24]. In this paper, three differ-
ent types of speaker-independent posterior features have been
considered, namely, phonetic posteriorgram, GMM posterior-
gram, and Vocal Tract Length (VTL)-warped posteriorgram.
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2.1. Phone Posteriorgram (PPG)

PPG contains the posterior probability for each phonetic class
obtained for a given speech signal [16]. In this paper, we used
Brno University of Technology (BUT) phoneme recognizer
tool, which is Split-Temporal Context (STC) neural network-
based phoneme recognition system [25]. In particular, BUT
system trained on the English data from TIMIT corpus have
been used to extract PPG. The trained speech recognizers mod-
els may not be available for all the languages. Hence, it is nec-
essary to develop the unsupervised speaker-independent poste-
riorgram.

2.2. Gaussian Posteriorgram (GP)

Gaussian posteriorgram has been extensively used for Query-
by-Example Spoken Term Detection (QbE-STD) task [26]. In
particular, the problem of detecting the presence of query within
the spoken utterance is known as QbE-STD [27, 28]. The pos-
terior probability P (Ck|ot) of the current frame ot (for kth

cluster Ck, and tth feature vector) of GP can be computed as
follows:

P (Ck|ot) =
ωkinitN (ot;µkinit,Σkinit)∑Np

j=1 ω
j
initN (ot;µjinit,Σ

j
init)

, (1)

where Np is the number of GMM components, ωkinit, µ
k
init

and Σkinit are the weights, mean vectors and covariance matri-
ces, respectively for each kth Gaussian components (1 ≤ k ≤
Np). The GMM parameters are estimated using Expectation-
Maximization (EM) algorithm [29]. The GMM parameters are
trained from large number of speakers and the procedure for
training the GMM is described in the following sub-section 2.3,
step 2.

2.3. Proposed VTL-Warped GP

It has been observed that the formants for uniform vocal tract
are inversely proportional to the length of vocal tract [30]. Thus,
VTL variations is a well-known contributing factor to speaker-
related spectral variability for having different speaker charac-
teristics. To obtain the speaker-independent posterior features,
we applied VTLN technique to achieve speaker-independent
VTL-warped posterior features. The conventional approaches
for VTLN warping factor estimation require an acoustic model
and phonetic transcription. The maximum likelihood search is
performed to obtain suitable speaker-specific VTLN warping
factor [31, 32]. The procedure of VTL-warped Gaussian poste-
riorgram is as follows [28], [33]:

1. Feature Extraction: Compute warped feature vector se-
quence, i.e., Xα := {xα1 , xα2 , . . . xαT } that carry infor-
mation from the different warping factors, namely, α =
0.88, 0.90, . . . ; 1.12. In this paper, we used Perceptual Lin-
ear Prediction (PLP) cepstral feature vectors [34]. Human
VTL varies from nearly 13 cm (for adult female) to 18 cm
(for adult male) [31]. Due to this length variations, formant
frequencies can deviate by 25 % among different speakers.
To incorporate this deviation, the VTLN warping factors are
considered in the range from 0.88 to 1.12 [31].

2. Initial speaker-independent GMM Training:
The unwarped feature vectors are pulled to model the
gender-independent characteristics for acoustic features.
The unwarped features, i.e., the feature vector with VTLN
warping factor α = 1, are taken from the large num-
ber of speakers and thus, can be assumed to have speaker-

independent characteristics. Let this trained gender-
independent GMM be λ having the weight parameters ωi,
mean vectors µi, Covariance matrix Σi for ith components
of GMM.

λinit = {ωiinit, µiinit,Σiinit}Nc
i=1, (2)

where Nc is the number of components. In a practical sce-
nario, covariance matrix Σi is considered to have only di-
agonal elements for computational simplicity. We used this
speaker-independent GMM to compute the Gaussian poste-
riorgram as described in sub-Section 2.2.

3. VTLN warping factor estimation: The formants shifting
w.r.t. speaker-independent GMM can be captured by VTLN
warping factor. In order to estimate the VTLN warping fac-
tor, we follow the approach as suggested in our previous
work [28], [33]. VTLN warping factor is estimated from
the sets of different warped feature vector sequences Xα,
with different values of α. The likelihood values of Xα are
computed against the speaker-independent GMM, λinit and
MLE criteria is considered to estimate VTLN warping fac-
tor.

α̂ = arg max
0.88≤α≤1.12

P (Xα|λinit). (3)

4. Retraining of GMM: The VTL warped features can be com-
bined together from large number of speakers to train GMM.
The objective is to achieve further speaker-independent
model by utilizing the acoustic features after spectral scal-
ing compensation. GMM is further retrained with warped
features, Xα. This new model λr ∼ (µr,Σr, ωr) is differ-
ent from the earlier GMM model, λinit and expected to have
more speaker-independent characteristics.

5. Set λinit = λr . Run steps 3 to steps 5 for five times [28],
[33].

6. Computation of Posteriorgram: Now based on the estimated
warping factors and trained GMM, Gaussian posteriorgrams
are computed. Thus, the Eq. (1) of Gaussian posterior-
gram is modified as follows by considering new speaker-
independent model λr:

P (Ck|ot) =
ωkrN (ot;µkr ,Σkr )

∑Np

j=1 ω
j
rN (ot;µjr,Σjr)

. (4)

Figure 1: Schematic block diagram of extracting VTL-warped
posterior features. After [28], [33].
Figure 1 shows the block diagram of warped Gaussian posteri-
orgram computation using VTLN warping factor and speaker-
independent GMM. In particular, as described VTL warped
features are extracted with different warping factor α. Ini-
tial GMM model is created as Speaker-independent GMM us-
ing unwarped acoustic features. Speaker-independent GMM is
used to estimate VTLN warping factor for each utterance using
MLE criteria. Using estimated VTLN warping factor, VTLN
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Figure 2: The system architecture for proposed VTL-warped GP for non-parallel VC.

warped acoustic features are used to retrain the GMM parame-
ter to characterize more speaker invariance property in GMM.
This new speaker-independent GMM is further used to esti-
mate VTLN warping factor and warped acoustic features are
again used for re-training. This procedure is iteratively exe-
cuted for five iterations (as suggested in [28], [33]). Speaker-
pairs data from the VCC 2016 database is used to train speaker-
independent GMM for the VTLN posteriorgram.

3. DNN-based VC System Architecture
The relation between the spectral feature vectors X, and Y are
obtained using the DNN, which consists of k > 2 multiple lay-
ers, where k is the total number of layers. The first, last, and
the middle layers of the DNN are called as an input, output, and
the hidden layers, respectively [35]. Here, each layer performs
either nonlinear or linear transformation. The transformation at
ith layer is given by [36]:

hi+1 = f(WT
i hi + bi), (5)

where hi, hi+1, Wi, bi are called as input, output, weights and
bias of ith layers, and f is an activation function that is either
nonlinear (such as, tanh, sigmoid, ReLU) or linear. h1 = X
and hK+1 = Y are the input, and output layers of DNN.
Due to higher number of layers, DNN captures more complex
relationship between the source and target speakers’ spectral
features. The adaptive moment estimation-based optimization,
i.e., Adam optimization is used to train the weights and bi-
ases of the DNN such that Mean Squared Error (MSE), i.e.,
E = ||Y − Ŷ||2 is minimized, where Ŷ is the predicted out-
put. For baseline system, we use the single DNN trained with
the aligned pairs obtained using the INCA algorithm.

Figure 2 shows the architecture of the proposed VC system
for the non-parallel case. Here, the VTLN warping factor is es-
timated first for a given speaker-pair. This warping factor is then

used to estimate the VTL-warped GP. One DNN (i.e., DNN-A)
is trained by taking source speaker’s spectral features as an in-
put and the VTL-warped posteriorgram features as an output.
The other DNN (i.e., DNN-B) is trained by considering target
speaker’s VTL-warped posteriorgram features and spectral fea-
tures as an input and output, respectively. During the testing
phase, the source speaker’s spectral features are first converted
using DNN-A and then this predicted VTL-warped posterior-
gram is given as an input to the DNN-B. Converted spectral
features predicted by DNN-B is then applied to the vocoder and
converted into the speech signal. The proposed framework does
not need the aligned source and target speakers’ features. Thus,
the proposed framework behaves exactly the same way for par-
allel VC case.

4. Experimental Results
4.1. Experimental Setup

In this paper, a subset of the VCC 2016 database, which con-
tains speakers SF1, SM1, TF1, and TM1 has been used to build
VC systems [20]. Out of 162 training utterances given for each
speaker in the VCC 2016 database, we have selected 40 non-
parallel utterances from the source and target speakers. In par-
ticular, utterance 1 to 40 are selected from the source speak-
ers. On the other hand, 41 to 80 utterances are taken from the
target speaker. Thus, both the set have non-overlapping utter-
ances. 25-D Mel Cepstral Coefficients (MCCs) (including the
0th coefficient) and 39-D PLP features (including ∆ and ∆∆)
as suggested in [28], [33]. 1-D F0 for each frame (with 25 ms
frame duration, and 5 ms frame shift) have been extracted. 120-
D phonetic posterior features have been extracted using BUT
decoder. Similarly, 120-D GMM and VTL-warped posterior-
gram is extracted in order to compare its performance w.r.t.
the 120-D PPG. The number of mixture components were ini-
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tially set to 128 with Vector Quantization (VQ) initialization.
To obtain 120-D posterior features, we perform the iterative ap-
proach to merge the two closest centroids till we obtain 120
centroids. We have built in total 16 non-parallel VC systems for
all the four speaker-pairs. In particular, we developed proposed
system with phonetic, GMM and VTL-warped posteriorgram-
based features for all the four speaker-pairs. We used three
hidden layered DNN-A with 25, 512, 512, 512, 120 number of
neurons in each input, hidden and the output layers, respec-
tively. Similarly, DNN-B contains the 120, 512, 512, 512, 25
number of neurons in each layers, respectively. Baseline system
contains 25, 512, 512, 512, 25 number of neurons in each layer,
respectively. We used Rectifier Linear Unit (ReLU) as nonlinear
activation function and Adam optimization with the β1 = 0.9
and β2 = 0.999 to train the network [37]. Mean-variance
(MV) transformation is used for the F0 transformation [38].
The AHOCODER is used for the analysis-synthesis [39].

4.2. Objective Evaluation

The state-of-the-art Mel Cepstral Distortion (MCD) is used for
objective evaluation [38]. It can be observed that proposed
VTLN posteriorgram-based system is performing better than
the baseline system in all the VC systems. In particular, on an
average VTLN posteriorgram-based VC system is performing
better than the GMM, and phonetic posteriorgram-based VC
system. The higher value of the MCD for phonetic posterior-
gram is possibly due to the fact that the BUT speech recog-
nizer did not use the training data from VCC 2016 database.
In addition, development of speech recognizer from 40 utter-
ances of VCC is difficult. Hence, the development of unsu-
pervised speaker-independent posterior features (i.e., proposed
VTL-warped posterior) is indeed helpful in the VC task where
the less number of training utterances are available from the tar-
get speaker in the most practical scenarios.

Figure 3: The MCD analysis of the VC systems with 95 % con-
fidence interval.

4.3. Subjective Evaluation

Mean Opinion Score (MOS) test have been performed for evalu-
ating the speech quality and the Speaker Similarity (SS) of con-
verted voice. The MOS of total 192 samples from the 12 non-
native English subjects (3 females and 9 males with no known
hearing impairments, and with the age variations between 19 to
29 years) were taken. In the MOS test, subjects were asked to
evaluate the randomly played utterances for the speech quality
and SS. The subjects were asked to rate the converted voices on
the scale of 1 (i.e., very bad) to 5 (i.e., very good) for speech
quality (i.e., naturalness). On the other hand, subjects were

asked to rate the converted voice in terms of SS on the scale of
1 (not at similar) to 5 (exactly similar) w.r.t. the target speaker.
The result of the MOS test is shown in the Figure 4 with 95
% confidence interval. We observed 13.3 % relative improve-
ment over the baseline system in MOS test for SS. On the other
hand, there is a relative reduction by 3.3 % in MOS for speech
quality. It is possibly due to the fact that the DNN trained with
aligned pairs obtained using nearest neighbor-based technique
is trying to learn the mapping function, which is nearer to the
identity mapping. This leads to the issue where the converted
spectrum is nearer to the source spectrum than the actual target
spectrum. Hence, the quality is more preserved than the SS in
the converted voice.

Figure 4: The MOS analysis for the developed VC systems with
95 % confidence interval.

5. Summary and Conclusions
In this study, we presented the use of unsupervised VTL-warped
Gaussian posteriorgram representation to establish the mapping
between the source and the target speakers’ spectrum. The di-
rect alignment procedure between the source and target spec-
trum results into many-to-one or one-to-many correspondences,
which deteriorate the performance of the VC system. The pro-
posed VTL-warped Gaussian posteriorgram representation is
mapped from and to the source and target speaker spectral fea-
tures, respectively, using two different DNNs trained with each
speakers data. The speaker-independent feature set is obtained
by training a GMM with warped vocal tract length (VTL) cep-
stral features extracted from the data of the pair speakers. The
warping factor is found iteratively with GMM training such that
maximum likelihood is obtained under a discrete set of warped
values and given the speaker-pair non-parallel acoustic data.
The final feature set is the Gaussian posteriograms computed
from the resulting GMM. Proposed VTL-warped Gaussian pos-
teriorgram gave lower MCD scores and higher speaker similar-
ity for non-parallel VC systems. The improvement in SS might
be due to the use of VTLN between source and target. In fu-
ture, we plan to explore the possible use of additional mapping
in order to avoid the mismatch between source and target pos-
teriorgram representation.
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